Main Article Content

Abstract

Agricultural waste, especially from rice such as straw, husks, and bran, is one of the abundant biomasses in Indonesia, particularly in Sleman Regency, DI Yogyakarta, which is one of the regions with the highest rice productivity. The potential of rice waste can be used as a source of bioenergy using a biorefinery approach. The concept of a biorefinery is the processing of biomass that produces various products and by-products to achieve sustainability. The analysis of the potential of this biomass waste was conducted using p-graph and techno-economics. Based on the optimization analysis with the p-graph, the optimal and maximal solutions were obtained after running the superstructure flow. The optimal solution indicates that the transesterification process of rice bran into biodiesel is more feasible with a profit of 9000 USD/year. For the maximal solution, an economic analysis was conducted because the products generated are more numerous, allowing for the implementation of a biorefinery approach. The results of the techno-economic analysis show that the production of several bioenergy products will fully recoup the initial investment by the 8th year. The IRR value obtained is 21.7%, while the MARR (Minimum Attractive Rate of Return) is 15%, indicating that the investment is viable for funding. Additionally, from an environmental perspective, the use of biomass waste for bioenergy production has a positive impact by reducing greenhouse gas emissions and pollution, as well as enhancing soil fertility through the application of biochar. From a social perspective, community-based bioenergy production can increase income, improve community welfare, enhance bioenergy production, and support energy independence and sustainability.

Keywords

Bioenergy P-graph Rice Waste Technical Economics

Article Details

References

  1. Alexandri, M., López-Gómez, J. P., Olszewska-Widdrat, A., & Venus, J. (2020). Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: The Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. Fermentation, 6(2), 42.
  2. Aziz, T., Shah, Z., Sarwar, A. et al. Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. (2023). Biomass Conversion and Biorefinery, 2190-6823
  3. Badan Pusat Statistik. (2023). Produktivitas Padi Kabupaten Sleman 2023. [Diakses pada 23 November 2024]. Available online : https://slemankab.bps.go.id/id/statistics-table/2/MTQ0IzI=/produksi-padi-kabupaten-sleman.html
  4. Bakari, R., Kivevele, T., Huang, X., & Jande, Y. (2020). Simulation and optimisation of the pyrolysis of rice husk: Preliminary assessment for gasification applications. Journal of Analytical and Applied Pyrolysis, 150, 104891.
  5. Bank Indonesia. (2024). Kurs Mata Uang Indonesia. [Diakses pada 23 Desember 2024]. Available online: https://www.bi.go.id/id/statistik/informasi-kurs/transaksi-bi/default.aspx
  6. Bazargan, A., Bazargan, M., & Mckay, G. (2015). Optimization of rice husk pretreatment for energy production. Renewable Energy, 77, 512-520.
  7. Benjamin, M. F. D., Ventura, J.-R. S., Sangalang, K. P. H., Adorna, J. A., Belmonte, B. A., & Andiappan, V. (2021). Optimal synthesis of Philippine agricultural residue-based integrated biorefinery via the P-graph method under supply and demand constraints. Journal of Cleaner Production, 308, 127348.
  8. Bhaskar, T., Bhavya, B., Singh, R., Naik, D., Kumar, A., & Goyal, H. (2011). Thermochemical Conversion of Biomass to Biofuels. Biofuels, 51-77
  9. Bijarchiyan, M., Sahebi, H., & Mirzamohammadi, S. (2020). A sustainable biomass network design model for bioenergy production by anaerobic digestion technology: using agricultural residues and livestock manure. Energy, Sustainability and Society, 10, 1-17.
  10. Byun, J., & Han, J. (2020). Sustainable development of biorefineries: integrated assessment method for co-production pathways. Energy & Environmental Science, 13(8), 2233.
  11. Chungsangunsit, T., Gheewala, S., & Patumsawad, S. (2009). Emission Assessment of Rice Husk Combustion for Power Production. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 3, 625-630.
  12. De Medeiros, E. M., Posada, J. A., Noorman, H., Osseweijer, P., & Filho, R. M. (2017). Hydrous bioethanol production from sugarcane bagasse via energy self-sufficient gasification-fermentation hybrid route: Simulation and financial analysis. Journal of Cleaner Production, 168, 1625–1635
  13. Diehlmann, F., Zimmer, T., Glöser-Chahoud, S., Wiens, M., & Schultmann, F. (2019). Techno-economic assessment of utilization pathways for rice straw: A simulation-optimization approach. Journal of Cleaner Production, 4, 369
  14. Elbasiouny, H., Elbanna, B., Al-Najoli, E., Alsherief, A., Negm, S., El-Nour, E., Nofal, A., & Sharabash, S. (2019). Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. Waste Management in MENA Regions, Springer, 149--169
  15. Elizabeth, R. (2021). Pemakaian Biogas: Hemat Biaya Bahan Bakar Dan Tambahan Pendapatan Rumahtangga Mendukung Ketahanan Energi. In Risalah Kebijakan Pertanian Dan Lingkungan. Rumusan Kajian Strategis Bidang Pertanian dan Lingkungan, 8 (3), 151.
  16. Elias, M., Hunt, J., Remucal, J., Saksa, P., Sanchez, D. L. (2022). Biochar Carbon Credit Market Analysis: Examining the potential for coupled biochar and carbon credit production from wildfire fuel reduction projects in the Western U.S. Blue Forest Conservation.
  17. Friedler, F., Aviso, K. B., Bertok, B., Foo, D. C., & Tan, R. R. (2019). Prospects and challenges for chemical process synthesis with P-graph. Current Opinion in Chemical Engineering, 26, 58–64.
  18. Go, A., Quijote, K., Agapay, R., Ju, Y., Angkawijaya, A., & Santoso, S. (2021). Biodiesel from rice bran lipids: resource assessment and technological review. Biomass Conversion and Biorefineri, 13, 3475 - 3519.
  19. Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., Angellier-Coussy, H., Jang, G., Verniquet, A., Broeze, J., Schaer, B., Batista, A., & Sebok, A. (2018). A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 48, 614 - 654.
  20. Hasan, A., Wakil, M., & Kafy, M. (2014). Prospect of Rice Bran for Biodiesel Production in Bangladesh. Procedia Engineering, 90, 746-752.
  21. Hoang, A., Tabatabaei, M., Aghbashlo, M., Carlucci, A., Ölçer, A., Le, A., & Ghassemi, A. (2021). Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable & Sustainable Energy Reviews, 135, 110204.
  22. Hossain, A. (2015). Implementation of Alkaline Catalysed Transesterification Bioprocess in Biodiesel Preparation from Fresh Water Algae. Global Journal of Biology, Agriculture, & Health. 4(3), 27-32.
  23. Huang, X., Hu, Z., Miao, Z., Jiang, E., & Ma, X. (2020). Chemical looping gasification of rice husk to produce hydrogen-rich syngas under different oxygen carrier preparation methods. International Journal of Hydrogen Energy, 45(51), 26865–26876.
  24. Kementrian Energi dan Sumber Daya Mineral. (2024). [Diakses pada 26 November 2024]. Available online : https://www.esdm.go.id/id/media-center/arsip-berita/hip-bbn-bioetanol-bulan-oktober-2024-ditetapkan-sebesar-rp14144-per-liter-
  25. Kementrian Energi dan Sumber Daya Mineral. (2024). [Diakses pada 26 November 2024]. Available online: https://www.esdm.go.id/id/media-center/arsip-berita/ditjen-ebtke-tetapkan-harga-hip-bbn-biodiesel-oktober-2024-senilai-rp12633-per-liter-
  26. Kumar, R., Kumar, G., & Chandrashekar, N. (2011). Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.. Bioresource technology, 102 (11), 6617.
  27. Linam, F.,Limmer, M.A., Ebling, A.M., Seyfferth, A.L.(2023). Rice husk and husk biochar soil amendments store soil carbon while water management controls dissolved organic matter chemistry in well-weathered soil. Journal of Environmental Management, 339, 117936,
  28. Liu, G., & Bao, J. (2017). Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production. Bioresource technology, 243, 1232-1236.
  29. Mencarelli, L., Chen, Q., Pagot, A., Grossmann, I.E., (2020). A review on superstructure optimization approaches in process system engineering. Computers & Chemical Engineering, 136, 106808.
  30. Mutmainnah, S., Lamusa, A., & Chansa, S. Y. (2022). Analisis Pendapatan Usahatani Padi Sawah Desa Pewunu Kecamatan Dolo Barat Kabupaten Sigi. Jurnal Pembangunan Agribisnis (1) 3, 36).
  31. Nguyen, D., Scheer, C., Rowlings, D., & Grace, P. (2015). Rice husk biochar and crop residue amendment in subtropical cropping soils: effect on biomass production, nitrogen use efficiency and greenhouse gas emissions. Biology and Fertility of Soils, 52, 261 - 270.
  32. Niu, M., Huang, Y., Jin, B., Shaohua, L., Dong, Q., Gu, H., & Sun, R. (2019). A novel two-stage enriched air biomass gasification for producing low-tar high heating value fuel gas: Pilot verification and performance analysis. Energy, 2, 68.
  33. Raina, N., Slathia, P., & Sharma, P. (2020). Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF). Biomass Conversion and Biorefineri, 12, 5175 - 5195.
  34. Sangalang, K., Belmonte, B., Ventura, J., Andiappan, V., & Benjamin, M. (2021). P-graph method for optimal synthesis of philippine agricultural waste-based integrated Biorefineri. Chemicalcengineering transactions, 83, 103-108.
  35. Sreejith, C., Muraleedharan, C., & Arun, P. (2013). Thermo-Chemical Analysis of Biomass Gasification by Gibbs Free Energy Minimization Model-Part: II (Optimization of Biomass Feed and Steam to Biomass Ratio). International Journal of Green Energy, 10, 610 - 639.
  36. Sangalang, K.P.H., Belmonte, B.A., Ventura, J. S., Andiappan, V., Benjamin, M.F.D., (2021). P-graph Method for Optimal Synthesis of Philippine Agricultural Waste-based Integrated Biorefineri. Chemical Engineering Transactions. 83. 103-108.
  37. Saga, K., Imou, K., Yokoyama, S., & Minowa, T. (2010). Net energy analysis of bioethanol production system from high-yield rice plant in Japan. Applied Energy, 87, 2164-2168.
  38. Xu, H., Ou, L., Li, Y., Hawkins, T., & Wang, M. (2022). Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States. Environmental Science & Technology, 56, 7512 - 7521.
  39. Ufitikirezi, J. D. M., Filip, M., Ghorbani, M., Zoubek, T., Olšan, P., Bumbalek, R., Strob, M., Bartoš, P., Umurungi, S., Murindangabo, Y., Heřmánek, A., Tupý, O., Havelka, Z., Stehlík, R., Černý, P., & Smutný, L. (2024). Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion. Sustainability.
  40. Yang, Z., Koh, S., Ng, W., Lim, R., Tan, H., Tong, Y., Dai, Y., Chong, C., & Wang, C. (2016). Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia. Journal of Environmental Management, 172, 40-8.
  41. Yokayama, S. & Matsumura, Y. (2008). The Asian Biomass Handbook. Tokyo: The Japan Institute of Energy
  42. Zhao, P., Pu, F., Su,C., Wan,Y., Huang,T., Hou,X., Cai,D., (2024) Towards valorization of rice straw into bioethanol and lignin: Emphasizing critical role of deep eutectic solvent components in biorefining process. Bioresource Technology, 399(130635).