Main Article Content

Abstract

This study investigates the material circularity of modular wall panel designs using bamboo, wood, and light-gauge steel (LGS) as primary components. Through a comparative analysis of 9 representative panel prototypes, the research evaluates embodied energy (EE), recycling efficiency, and percentage of discarded material under a cradle-to-gate perspective to assess environmental performance. The study examines the relative circularity performance of bamboo, wood, and steel-framed panels. Furthermore, the research examined material configurations that best balance structural function and circularity. Key limitations include the modest sample size (9 prototypes), the educational provenance of prototypes (course-based fabrication), reliance on cradle-to-gate accounting rather than full life-cycle cost or in-service performance data, and uncertainty ranges in embodied-energy databases. Results indicate that biologically composed panels, such as bamboo and wood, demonstrate significantly lower EE and negligible discarded waste, aligning well with circular economy principles. These caveats are discussed and used to frame recommendations for further LCA, long-term performance testing, and scaled prototyping.

Keywords

Circular economy Embodied energy Modular architecture Recycling Upcycling

Article Details

How to Cite
Widyoputro, M. K. L., & Maghzaya, A. R. (2025). Material Circularity on Modular Wall Panel Designs. Journal of Architectural Research and Design Studies, 9(2), 221–232. https://doi.org/10.20885/jars.vol9.iss2.art9

References

  1. Abdullah, A. H. D., Karlina, N., Rahmatiya, W., Mudaim, S., Patimah, & Fajrin, A. R. (2017a). Physical and mechanical properties of five Indonesian bamboos. IOP Conference Series: Earth and Environmental Science, 60(1), 012014. https://doi.org/10.1088/1755-1315/60/1/012014
  2. Abdullah, A. H. D., Karlina, N., Rahmatiya, W., Mudaim, S., Patimah, & Fajrin, A. R. (2017b). Physical and mechanical properties of five Indonesian bamboos. IOP Conference Series: Earth and Environmental Science, 60(1), 012014. https://doi.org/10.1088/1755-1315/60/1/012014
  3. Alazmi, S., Abdelmegid, M., Sarhan, S., Poshdar, M., Gonzalez, V., & Bidhendi, A. (2025). An integrated framework to improve waste management practices and environmental awareness in the Saudi construction industry. Cleaner Waste Systems, 10, 100195. https://doi.org/10.1016/J.CLWAS.2024.100195
  4. Ali-Gombe, B., Tokbolat, S., & Mckechnie, J. (2025). A Transition to Sustainable Built Environment: A Framework for Modular Building Construction Designed for Disassembly. Lecture Notes in Civil Engineering, 237, 1585–1596. https://doi.org/10.1007/978-3-031-69626-8_132/FIGURES/7
  5. Alnafrah, I., Alqararah, K., & AlJaradin, M. (2025). From linear to circular: Evaluating the effects of circular economy on sustainable development progress in the EU economies. Journal of Environmental Management, 382, 125383. https://doi.org/10.1016/J.JENVMAN.2025.125383
  6. Attia, S., Al-Obaidy, M., Mori, M., Campain, C., Giannasi, E., van Vliet, M., & Gasparri, E. (2024). Disassembly calculation criteria and methods for circular construction. Automation in Construction, 165, 105521. https://doi.org/10.1016/J.AUTCON.2024.105521
  7. Balasbaneh, A. T., & Ramadan, B. S. (2024). Integrating three pillars of sustainability for evaluating the modular construction building. Construction Innovation. https://doi.org/10.1108/CI-01-2024-0002/1249314
  8. Bano, A., Aziz, M. K., Prasad, B., Ravi, R., Shah, M. P., Lins, P. V. D. S., Meili, L., & Prasad, K. S. (2025). The multifaceted power of biochar: A review on its role in pollution control, sustainable agriculture, and circular economy. Environmental Chemistry and Ecotoxicology, 7, 286–304. https://doi.org/10.1016/J.ENCECO.2025.01.004
  9. Bond, C. E., Killingsworth, J., Elliott, J. W., Schaller, Z., & Conrad, S. (2025). Wood waste reduction through volumetric modular building techniques. Cleaner Waste Systems, 11, 100253. https://doi.org/10.1016/J.CLWAS.2025.100253
  10. Cervantes Puma, G. C., Salles, A., Turk, J., Rajčić, V., Muñoz Puche, A., Korniejenko, K., Tsalkatidis, T., Tavares, V., Martos, R. P., Ruchinskaya, T., & Bragança, L. (2025). Circular Economy Best Practices in the Built Environment. Springer Tracts in Civil Engineering, Part F3604, 5–24. https://doi.org/10.1007/978-3-031-73490-8_1/TABLES/1
  11. Çetin, S., Raghu, D., Honic, M., Straub, A., & Gruis, V. (2023). Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption, 40, 422–437. https://doi.org/10.1016/J.SPC.2023.07.011
  12. Chen, L., Huang, Z., Pan, W., Su, R. K. L., Zhong, Y., & Zhang, Y. (2024). Low carbon concrete for prefabricated modular construction in circular economy: An integrated approach towards sustainability, durability, cost, and mechanical performances. Journal of Building Engineering, 90, 109368. https://doi.org/10.1016/J.JOBE.2024.109368
  13. Das, I. P., Kini, P. G., & Prashant, S. (2025). A systematic literature review of bamboo as reinforcement in concrete. Discover Sustainability, 6(1), 1–28. https://doi.org/10.1007/S43621-025-01132-W/TABLES/9
  14. Delem, L., Douguet, E., Wastiels, L., & Claude, V. (2022). LCA supporting the design of circular biobased wall panels. E3S Web of Conferences, 349, 05002. https://doi.org/10.1051/E3SCONF/202234905002
  15. Dewagoda, K. G., Ng, S. T., Kumaraswamy, M. M., & Chen, J. (2024). Design for Circular Manufacturing and Assembly (DfCMA): Synergising Circularity and Modularity in the Building Construction Industry. Sustainability 2024, Vol. 16, Page 9192, 16(21), 9192. https://doi.org/10.3390/SU16219192
  16. Fishman, T., Mastrucci, A., Peled, Y., Saxe, S., & van Ruijven, B. (2024). RASMI: Global ranges of building material intensities differentiated by region, structure, and function. Scientific Data 2024 11:1, 11(1), 418-. https://doi.org/10.1038/s41597-024-03190-7
  17. Garusinghe, G. D. A. U., Perera, B. A. K. S., & Weerapperuma, U. S. (2023). Integrating Circular Economy Principles in Modular Construction to Enhance Sustainability. Sustainability 2023, Vol. 15, Page 11730, 15(15), 11730. https://doi.org/10.3390/SU151511730
  18. Gasparri, E., Arasteh, S., Kuru, A., Stracchi, P., & Brambilla, A. (2023). Circular economy in construction: A systematic review of knowledge gaps towards a novel research framework. Frontiers in Built Environment, 9, 1239757. https://doi.org/10.3389/FBUIL.2023.1239757/BIBTEX
  19. Gong, Y., & Whelton, J. (2019). In Conversation: Ellen MacArthur: From Linear to Circular. She Ji: The Journal of Design, Economics, and Innovation, 5(3), 247–256. https://doi.org/10.1016/J.SHEJI.2019.08.001
  20. Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, 161(2), 87–98. https://doi.org/10.1680/ENER.2008.161.2.87
  21. Haq, U. N., & Alam, S. M. R. (2023). Implementing circular economy principles in the apparel production process: Reusing pre-consumer waste for sustainability of environment and economy. Cleaner Waste Systems, 6, 100108. https://doi.org/10.1016/J.CLWAS.2023.100108
  22. Horn, S., Turunen, T., Saukkonen, S., Nylén, E. J., & Sorvari, J. (2025). Circular economy solutions for magnetic resonance imaging–Mitigation of environmental impacts and critical raw material use. Resources, Conservation and Recycling, 215, 108095. https://doi.org/10.1016/J.RESCONREC.2024.108095
  23. Joustra, J., Flipsen, B., & Balkenende, R. (2021). Circular Design of Composite Products: A Framework Based on Insights from Literature and Industry. Sustainability 2021, Vol. 13, Page 7223, 13(13), 7223. https://doi.org/10.3390/SU13137223
  24. Kashem, A., Yahia, M., Rahman, M. M., Shahjalal, M., & Morshed, A. (2024). SUSTAINABLE MATERIALS SELECTION IN BUILDING DESIGN AND CONSTRUCTION. International Journal of Science and Engineering, 1(04), 106–119. https://doi.org/10.62304/IJSE.V1I04.199
  25. Li, Z., Tsavdaridis, K. D., & Katenbayeva, A. (2024). Reusable timber modular buildings, material circularity and automation: The role of inter-locking connections. Journal of Building Engineering, 98, 110965. https://doi.org/10.1016/J.JOBE.2024.110965
  26. Lima, A. T., Kirkelund, G. M., Lu, Z., Mao, R., Kunther, W., Rode, C., Slabik, S., Hafner, A., Sameer, H., Dürr, H. H., Flörke, M., Lowe, B. H., Aloini, D., Zerbino, P., & Simoes, S. G. (2024). Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood – A review for climate mitigation modeling. Renewable and Sustainable Energy Reviews, 202, 114697. https://doi.org/10.1016/J.RSER.2024.114697
  27. Moustafa, Z., Asif, M., & Wuni, I. Y. (2025). Circular economy in the building sector: a systematic review of environmental, economic, and social dimensions. Sustainable Futures, 9, 100690. https://doi.org/10.1016/J.SFTR.2025.100690
  28. Musa, M. F., Mohammad, M. F., Mahbub, R., & Yusof, M. R. (2014). Enhancing the Quality of Life by Adopting Sustainable Modular Industrialised Building System (IBS) in the Malaysian Construction Industry. Procedia - Social and Behavioral Sciences, 153, 79–89. https://doi.org/10.1016/J.SBSPRO.2014.10.043
  29. Ouda, E., & Haggag, M. (2024). Automation in Modular Construction Manufacturing: A Comparative Analysis of Assembly Processes. Sustainability 2024, Vol. 16, Page 9238, 16(21), 9238. https://doi.org/10.3390/SU16219238
  30. Pacheco, D. A. de J., Rampasso, I. S., Michels, G. S., Ali, S. M., & Hunt, J. D. (2024). From linear to circular economy: The role of BS 8001:2017 for green transition in small business in developing economies. Journal of Cleaner Production, 439, 140787. https://doi.org/10.1016/J.JCLEPRO.2024.140787
  31. Panda, D., Haque, S., Frishammar, J., & Parida, V. (2025). Modularity for circular economy: Four circularity pathways for industrial firms. Journal of Cleaner Production, 519, 146001. https://doi.org/10.1016/J.JCLEPRO.2025.146001
  32. Parisi, L., & Donyavi, S. (2024). Modular momentum: assessing the efficacy of modular construction in alleviating the UK housing crisis. Discover Applied Sciences 2024 6:10, 6(10), 548-. https://doi.org/10.1007/S42452-024-06268-4
  33. Parracho, D. F. R., Nour El-Din, M., Esmaeili, I., Freitas, S. S., Rodrigues, L., Poças Martins, J., Corvacho, H., Delgado, J. M. P. Q., & Guimarães, A. S. (2025). Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations. Buildings, 15(5), 765. https://doi.org/10.3390/BUILDINGS15050765/S1
  34. Rajagopalan, N., Brancart, S., De Regel, S., Paduart, A., De Temmerman, N., & Debacker, W. (2021). Multi-Criteria Decision Analysis Using Life Cycle Assessment and Life Cycle Costing in Circular Building Design: A Case Study for Wall Partitioning Systems in the Circular Retrofit Lab. Sustainability 2021, Vol. 13, Page 5124, 13(9), 5124. https://doi.org/10.3390/SU13095124
  35. Sansom, M., & Meijer, J. (2022). Life-cycle assessment (LCA) for steel construction. https://op.europa.eu/en/publication-detail/-/publication/25e4be8e-97c1-4e79-b37b-a51b7634ef7c
  36. Shahidi Hamedani, S., Hamedani, S. S., & Aslam, S. (2025). Advancing the circular economy in construction through circular business models. Frontiers in Built Environment, 11. https://doi.org/10.3389/fbuil.2025.1629769
  37. Smitha, K. D., Dewi, O. C., Alkadri, M. F., & Rahmasari, K. (2025). The hybrid cycle of facade in ec building UI to achieve building circularity. ARTEKS : Jurnal Teknik Arsitektur, 10(1), 21–30. https://doi.org/10.30822/ARTEKS.V10I1.3056
  38. Tukker, A., Behrens, P., Deetman, S., Hu, M., Alejandre, E. M., van der Meide, M., Zhong, X., & Zhang, C. (2023). Circular construction: Six key recommendations. One Earth, 6(11), 1425–1429. https://doi.org/10.1016/j.oneear.2023.10.021