Main Article Content
Abstract
Gangguan spektrum autisme adalah kondisi neurologis yang ditandai dengan gangguan kemampuan komunikasi, keterasingan sosial, dan perilaku repetitif pada individu. Organisasi kesehatan global menghadapi kesulitan dalam membangun sistem diagnostik ASD yang efektif yang memfasilitasi analisis yang tepat dan prediksi autisme dini. Penelitian ini menyajikan pendekatan untuk prediksi dini anak-anak dengan ASD dengan memanfaatkan variabel signifikan melalui metode pembelajaran mesin. Data set terdiri dari kasus ASD sebanyak 1250 data dimana diambil 5 variabel yang sangat efektif untuk menghiutng koefisien korelasi pearson yaitu: jenis kelamin, keterlambatan bisaca, penyakit kuning, gangguan genetik dan riwatat keluarga. Analisis dataset mengunakan lima teknik Machine Learning yaitu: Naïve Bayes, K-Nearest Neighbor, Decision Tree, Support Vector Machine dan AdaBoostM1. Pengukuran akurasi, presisi, waktu prediksi, recall dan F1-score digunakan untuk menguji algoritma ML yang digunakan. Hasil pengujian menunjukkan bahwa metode Naïve Bayes dan K-Nearest Neighbor dengan tingkat akurasi sebesar 99,2% dan 96,3% dan waktu prediksi yang minimal sebesar 0,31 dan 0,46 detik. Sedangkan metode yang menunjukkan penurusan akurasi adalah Decision Tree dan AdaBoostM1 dengan masing-masing sebesar 95,8% dan 88,6%. Sedangkan kinerja paling rendah adalah metode Support Vector Machine dengan tingkat akurasi sebesar 81,2% dan waktu prediksi tertinggi sebesar 0,82 detik.
Keywords
Article Details
Copyright (c) 2025 Taryadi, Era Yunianto, Mosses Aidjili

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- S R R, Mounika S. Autism Spectrum Disorder Classification Using Machine Learning and Deep Learning- A Survey. EAI Endorsed Trans Pervasive Health Technol. 2023 Oct 26;9.
- Firdaus I, Pradipta RF. Implementasi Treatment and Education of Autistic and Realted Communicationhandicapped Children (TEACCH) pada Kemampuan Bina Diri Anak Down Syndrome. Jurnal ORTOPEDAGOGIA. 2019 Nov 30;5(2):57.
- Hossain MdE, Khan A, Moni MA, Uddin S. Use of Electronic Health Data for Disease Prediction: A Comprehensive Literature Review. IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar 1;18(2):745–58.
- Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020 Jul 13;10(1):229.
- Rahman MdM, Usman OL, Muniyandi RC, Sahran S, Mohamed S, Razak RA. A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder. Brain Sci. 2020 Dec 7;10(12):949.
- Hajjej F, Ayouni S, Alohali MA, Maddeh M. Novel Framework for Autism Spectrum Disorder Identification and Tailored Education With Effective Data Mining and Ensemble Learning Techniques. IEEE Access. 2024;12:35448–61.
- Rajab KD, Padmavathy A, Thabtah F. Machine Learning Application for Predicting Autistic Traits in Toddlers. Arab J Sci Eng. 2021 Apr 22;46(4):3793–805.
- Alwidian* J, Elhassan A, Ghnemat R. Predicting Autism Spectrum Disorder using Machine Learning Technique. International Journal of Recent Technology and Engineering (IJRTE). 2020 Jan 30;8(5):4139–43.
- Vakadkar K, Purkayastha D, Krishnan D. Detection of Autism Spectrum Disorder in Children Using Machine Learning Techniques. SN Comput Sci. 2021 Sep 22;2(5):386.
- Kaur A, Kahlon KS. Accurate Identification of ADHD among Adults Using Real-Time Activity Data. Brain Sci. 2022 Jun 26;12(7):831.
- Bala M, Ali MH, Satu MdS, Hasan KF, Moni MA. Efficient Machine Learning Models for Early Stage Detection of Autism Spectrum Disorder. Algorithms. 2022 May 16;15(5):166.
- Al-Salman W, Li Y, Oudah AY, Almaged S. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neurosci Res. 2023 Mar;188:51–67.
- Shinde AV, Patil DD. A Multi-Classifier-Based Recommender System for Early Autism Spectrum Disorder Detection using Machine Learning. Healthcare Analytics. 2023 Dec;4:100211.
- Chen P, Li F, Wu C. Research on Intrusion Detection Method Based on Pearson Correlation Coefficient Feature Selection Algorithm. J Phys Conf Ser. 2021 Jan 1;1757(1):012054.
- Kumar R, Arora R, Bansal V, Sahayasheela VJ, Buckchash H, Imran J, et al. Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient. Multimed Tools Appl. 2022 Aug 28;81(19):27631–55.
- Entezari-Maleki R, Rezaei A, Minaei-Bidgoli B. Comparison of Classification Methods Based on the Type of Attributes and Sample Size. J Convergence Inf Technol [Internet]. 2009;4:94–102. Available from: https://api.semanticscholar.org/CorpusID:16663667
- Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020 Jul 13;10(1):229.
- Hossain MdA, Saiful Islam SM, Quinn JMW, Huq F, Moni MA. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J Biomed Inform. 2019 Dec;100:103313.
- Fadi Fabdelja. https://www.kaggle.com/datasets/fabdelja/asd-screening-data-toddler-child-adoles-adult?select=Autism_Screening_Data_Combined.csv. 2025. kaggle.
- Arora N, Kaur PD. A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment. Appl Soft Comput. 2020 Jan;86:105936.
- Abdelmoula AK. Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Journal of Accounting and Management Information Systems [Internet]. 2015;14(1):79–106. Available from: https://EconPapers.repec.org/RePEc:ami:journl:v:14:y:2015:i:1:p:79-106
- Chang YC, Chang KH, Chu HH, Tong LI. Establishing decision tree-based short-term default credit risk assessment models. Commun Stat Theory Methods. 2016 Dec 25;45(23):6803–15.
- Boughaci D, Alkhawaldeh AAK, Jaber JJ, Hamadneh N. Classification with segmentation for credit scoring and bankruptcy prediction. Empir Econ. 2021 Sep 1;61(3):1281–309.
- Thabtah F, Peebles D. A new machine learning model based on induction of rules for autism detection. Health Informatics J. 2020 Mar 29;26(1):264–86.
- Farooq MS, Tehseen R, Sabir M, Atal Z. Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Sci Rep. 2023 Jun 13;13(1):9605.
References
S R R, Mounika S. Autism Spectrum Disorder Classification Using Machine Learning and Deep Learning- A Survey. EAI Endorsed Trans Pervasive Health Technol. 2023 Oct 26;9.
Firdaus I, Pradipta RF. Implementasi Treatment and Education of Autistic and Realted Communicationhandicapped Children (TEACCH) pada Kemampuan Bina Diri Anak Down Syndrome. Jurnal ORTOPEDAGOGIA. 2019 Nov 30;5(2):57.
Hossain MdE, Khan A, Moni MA, Uddin S. Use of Electronic Health Data for Disease Prediction: A Comprehensive Literature Review. IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar 1;18(2):745–58.
Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020 Jul 13;10(1):229.
Rahman MdM, Usman OL, Muniyandi RC, Sahran S, Mohamed S, Razak RA. A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder. Brain Sci. 2020 Dec 7;10(12):949.
Hajjej F, Ayouni S, Alohali MA, Maddeh M. Novel Framework for Autism Spectrum Disorder Identification and Tailored Education With Effective Data Mining and Ensemble Learning Techniques. IEEE Access. 2024;12:35448–61.
Rajab KD, Padmavathy A, Thabtah F. Machine Learning Application for Predicting Autistic Traits in Toddlers. Arab J Sci Eng. 2021 Apr 22;46(4):3793–805.
Alwidian* J, Elhassan A, Ghnemat R. Predicting Autism Spectrum Disorder using Machine Learning Technique. International Journal of Recent Technology and Engineering (IJRTE). 2020 Jan 30;8(5):4139–43.
Vakadkar K, Purkayastha D, Krishnan D. Detection of Autism Spectrum Disorder in Children Using Machine Learning Techniques. SN Comput Sci. 2021 Sep 22;2(5):386.
Kaur A, Kahlon KS. Accurate Identification of ADHD among Adults Using Real-Time Activity Data. Brain Sci. 2022 Jun 26;12(7):831.
Bala M, Ali MH, Satu MdS, Hasan KF, Moni MA. Efficient Machine Learning Models for Early Stage Detection of Autism Spectrum Disorder. Algorithms. 2022 May 16;15(5):166.
Al-Salman W, Li Y, Oudah AY, Almaged S. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neurosci Res. 2023 Mar;188:51–67.
Shinde AV, Patil DD. A Multi-Classifier-Based Recommender System for Early Autism Spectrum Disorder Detection using Machine Learning. Healthcare Analytics. 2023 Dec;4:100211.
Chen P, Li F, Wu C. Research on Intrusion Detection Method Based on Pearson Correlation Coefficient Feature Selection Algorithm. J Phys Conf Ser. 2021 Jan 1;1757(1):012054.
Kumar R, Arora R, Bansal V, Sahayasheela VJ, Buckchash H, Imran J, et al. Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient. Multimed Tools Appl. 2022 Aug 28;81(19):27631–55.
Entezari-Maleki R, Rezaei A, Minaei-Bidgoli B. Comparison of Classification Methods Based on the Type of Attributes and Sample Size. J Convergence Inf Technol [Internet]. 2009;4:94–102. Available from: https://api.semanticscholar.org/CorpusID:16663667
Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020 Jul 13;10(1):229.
Hossain MdA, Saiful Islam SM, Quinn JMW, Huq F, Moni MA. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J Biomed Inform. 2019 Dec;100:103313.
Fadi Fabdelja. https://www.kaggle.com/datasets/fabdelja/asd-screening-data-toddler-child-adoles-adult?select=Autism_Screening_Data_Combined.csv. 2025. kaggle.
Arora N, Kaur PD. A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment. Appl Soft Comput. 2020 Jan;86:105936.
Abdelmoula AK. Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Journal of Accounting and Management Information Systems [Internet]. 2015;14(1):79–106. Available from: https://EconPapers.repec.org/RePEc:ami:journl:v:14:y:2015:i:1:p:79-106
Chang YC, Chang KH, Chu HH, Tong LI. Establishing decision tree-based short-term default credit risk assessment models. Commun Stat Theory Methods. 2016 Dec 25;45(23):6803–15.
Boughaci D, Alkhawaldeh AAK, Jaber JJ, Hamadneh N. Classification with segmentation for credit scoring and bankruptcy prediction. Empir Econ. 2021 Sep 1;61(3):1281–309.
Thabtah F, Peebles D. A new machine learning model based on induction of rules for autism detection. Health Informatics J. 2020 Mar 29;26(1):264–86.
Farooq MS, Tehseen R, Sabir M, Atal Z. Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Sci Rep. 2023 Jun 13;13(1):9605.