Main Article Content
Abstract
Predicting cryptocurrency is difficult because it has high volatility, where prices can experience spikes or declines due to market dynamics. This study focuses on NameCoin, one of the oldest altcoins originating from Bitcoin. NameCoin was selected because it has relatively stable and extensive historical data. The objective of this study is to evaluate the performance of the Bidirectional Recurrent Neural Network (BiRNN) in predicting NameCoin price movements. This study employs an experimental method using historical data as input for the training process. Hyperparameter tuning is conducted systematically using four different scenarios to obtain the optimal model configuration. The dataset is divided into 80% for training the model and 20% for testing the performance of the trained model. Model performance is evaluated using RMSE, MSE, MAPE, coefficient of determination (R²), Directional Statistic (D-Stat), and loss value as indicators of model accuracy and stability. The experimental results show that Scenario 1 produces the most optimal performance, with RMSE = 0.0216, MAPE = 2.59%, R² = 0.9899, D-Stat = 53.71%, and the smallest loss value of 0.0012. These performance metrics indicate that the BiRNN model effectively captures nonlinear trends and accurately predicts the direction of price movements. Conversely, Scenario 3 had the worst performance, with a MAPE of 10.19%. By comparing these scenarios, it is clear that the configuration in Scenario 1 outperforms the others in terms of prediction accuracy and model stability against data fluctuations.
Keywords
Article Details
Copyright (c) 2025 Dori Gusti Alex Candra, Nurdi Afrianto, Idir Fitriyanto, Eka Sofiati, Budi Permana, Irzon Meditra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- N. A. Hasniawati, E. R. Lase, and A. R. Hutabarat, “Indonesian Household Payment Choice: A Nested Logit Analysis,” J. Cent. Bank. Theory Pract., vol. 9, pp. 291–313, 2020, doi: 10.2478/jcbtp-2020-0032.
- A. Karimah, I. U. Widyaningsih, F. A. Shavab, T. N. Sari, and H. Nupus, “Penyelenggaraan Transaksi Keuangan Non Tunai Sebagai Sistem Pembayaran Non Sipil Belanja Dinas Pegawai Negeri Sekretariat Daerah Kota Cilegon,” AKUMULASI Indones. J. Appl. Account. Financ., vol. 2, no. 1, pp. 13–23, 2023.
- Y. Ferra and S. R. Ajija, “The Influence of Non-Cash Payment Transactions on Economic Growth in 5 ASEAN Countries,” J. Ilmu Ekon. Terap., vol. 8, no. 2, pp. 272–283, 2023, doi: 10.20473/jiet.v8i2.51745.
- N. Zaware, “an Analytical Study of Cashless Transformation and Growth in Retail Market in India,” SSRN Electron. J., vol. c, pp. 19–26, 2021, doi: 10.2139/ssrn.3819230.
- M. Grzelczak and M. Soliwoda, “Do non-cash payments affect economic growth? Empirical evidence from EU countries,” Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser., vol. 2023, no. 166, pp. 301–317, 2023, doi: 10.29119/1641-3466.2022.166.20.
- E. A. Sinambela and D. Darmawan, “Strengths and Weaknesses of Using Electronic Money as a Substitute for Cash,” J. Soc. Sci. Stud., vol. 2, no. 2, pp. 56–68, 2022, doi: 10.56348/jos3.v2i2.27.
- W. Charoenwet, P. Thongtanunam, V. T. Pham, and C. Treude, Toward effective secure code reviews: an empirical study of security-related coding weaknesses, vol. 29, no. 4. 2024.
- G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou, “Artificially Intelligent Electronic Money,” IEEE Consum. Electron. Mag., vol. 10, no. 4, pp. 81–89, 2021, doi: 10.1109/MCE.2020.3024512.
- Gioia Arnone, “Blockchain and Cryptocurrency Innovation for a Sustainable Financial System,” Int. J. Ind. Manag., vol. 15, no. 1, pp. 1–16, 2022, doi: 10.15282/ijim.15.1.2022.8994.
- F. Akhtar et al., “Potential of Blockchain Technology in Digital Currency: A Review,” 2019 16th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2019, pp. 85–91, 2019, doi: 10.1109/ICCWAMTIP47768.2019.9067546.
- A. Zwitter and J. Hazenberg, “Decentralized Network Governance: Blockchain Technology and the Future of Regulation,” Front. Blockchain, vol. 3, no. March, pp. 1–12, 2020, doi: 10.3389/fbloc.2020.00012.
- C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, “A Blockchain-Based Multi-Cloud Storage Data Auditing Scheme to Locate Faults,” IEEE Trans. Cloud Comput., vol. 10, no. 4, pp. 2252–2263, 2022, doi: 10.1109/TCC.2021.3057771.
- H. Gupta and R. Chaudhary, “An Empirical Study of Volatility in Cryptocurrency Market,” J. Risk Financ. Manag., vol. 15, no. 11, 2022, doi: 10.3390/jrfm15110513.
- F. Puoti, F. Pittorino, and M. Roveri, Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting, vol. 1, no. 1. Association for Computing Machinery, 2025.
- P. Singh, D. P. Goel, and D. R. Bajaj, “A Review on Predictive Analysis of Cryptocurrencies,” SSRN Electron. J., 2024, doi: 10.2139/ssrn.4848652.
- G. Attanasio, L. Cagliero, P. Garza, and E. Baralis, “Combining news sentiment and technical analysis to predict stock trend reversal,” IEEE Int. Conf. Data Min. Work. ICDMW, vol. 2019-Novem, no. i, pp. 514–521, 2019, doi: 10.1109/ICDMW.2019.00079.
- Y. S. Ren, C. Q. Ma, X. L. Kong, K. Baltas, and Q. Zureigat, “Past, present, and future of the application of machine learning in cryptocurrency research,” Res. Int. Bus. Financ., vol. 63, 2022, doi: 10.1016/j.ribaf.2022.101799.
- M. Ali and S. Shatabda, “A data selection methodology to train linear regression model to predict bitcoin price,” 2020 2nd Int. Conf. Adv. Inf. Commun. Technol. ICAICT 2020, no. November, pp. 330–335, 2020, doi: 10.1109/ICAICT51780.2020.9333525.
- S. Ali Alahmari, “Predicting the Price of Cryptocurrency Using Support Vector Regression Methods,” J. Mech. Contin. Math. Sci., vol. 15, no. 4, pp. 313–322, 2020, doi: 10.26782/jmcms.2020.04.00023.
- M. Iqbal, M. Iqbal, F. Jaskani, K. Iqbal, and A. Hassan, “Time-Series Prediction of Cryptocurrency Market using Machine Learning Techniques,” EAI Endorsed Trans. Creat. Technol., vol. 8, no. 28, p. 170286, 2021, doi: 10.4108/eai.7-7-2021.170286.
- V. Saha, “Predicting Future Cryptocurrency Prices Using Machine Learning Algorithms,” J. Data Anal. Inf. Process., vol. 11, no. 04, pp. 400–419, 2023, doi: 10.4236/jdaip.2023.114021.
- A. Gupta, R. Chopda, B. Chaudhary, P. Dwivedi, and S. Vhatkar, “A Comprehensive Study on Namecoin,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 9, pp. 523–527, 2022, doi: 10.22214/ijraset.2022.46538.
- J. Lee, C. Liu, C. Ta, and C. Weng, “Towards Better Diagnosis Prediction Using Bidirectional Recurrent Neural Networks,” Stud. Health Technol. Inform., vol. 290, pp. 1054–1055, 2022, doi: 10.3233/SHTI220264.
- G. S. Chadha, A. Panambilly, A. Schwung, and S. X. Ding, “Bidirectional deep recurrent neural networks for process fault classification,” ISA Trans., vol. 106, pp. 330–342, 2020, doi: 10.1016/j.isatra.2020.07.011.
- R. K. Sharma and M. Casas, “Task-based Acceleration of Bidirectional Recurrent Neural Networks on Multi-core Architectures,” Proc. - 2022 IEEE 36th Int. Parallel Distrib. Process. Symp. IPDPS 2022, pp. 941–951, 2022, doi: 10.1109/IPDPS53621.2022.00096.
- H. Apaydin, H. Feizi, M. T. Sattari, and M. S. Colak, “Comparative Analysis of Recurrent Neural Network,” Water (Switzerland), vol. 12, pp. 1–18, 2020, [Online]. Available: https://www.mdpi.com/2073-4441/12/5/1500.
- H. Salman, J. Grover, and T. Shankar, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” vol. 2733, no. March, pp. 2709–2733, 2019, doi: 10.1162/NECO.
- K. Devi V, J. Mani, H. Shaker, and L. Jovanovic, “Sunspot Occurrence Forecasting With Metaheuristic Optimized Recurrent Neural Networks,” Theor. Appl. Comput. Intell., vol. 1, no. 1, pp. 15–26, 2023, doi: 10.31181/taci1120231.
- I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, 2024, doi: 10.3390/info15090517.
- M. Ge and Y. Yuan, “Evaluation model design of project construction safety level based on bidirectional recurrent neural network (BiRNN) and bidirectional long short-term memory (BiLSTM),” PeerJ Comput. Sci., vol. 10, 2024, doi: 10.7717/peerj-cs.2351.
- S. Geeitha, K. P. R. Prabha, J. Cho, and S. V. Easwaramoorthy, “Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-80472-5.
- D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
- D. C. Corresp, M. J. Warrens, G. Jurman, D. Chicco, M. J. Warrens, and G. Jurman, “Computer Science Manuscript to be reviewed The coefficient of determination R-squared is more informative than SMAPE , MAE , MAPE , MSE , and RMSE in The coefficient of determination R-squared is more informative than SMAPE , MAE , MAPE , MSE , and RMSE i,” 2021.
- A. Bouzid, D. Sierra-Sosa, and A. Elmaghraby, “Directional Statistics-Based Deep Metric Learning for Pedestrian Tracking and Re-Identification,” Drones, vol. 6, no. 11, pp. 1–14, 2022, doi: 10.3390/drones6110328.
References
N. A. Hasniawati, E. R. Lase, and A. R. Hutabarat, “Indonesian Household Payment Choice: A Nested Logit Analysis,” J. Cent. Bank. Theory Pract., vol. 9, pp. 291–313, 2020, doi: 10.2478/jcbtp-2020-0032.
A. Karimah, I. U. Widyaningsih, F. A. Shavab, T. N. Sari, and H. Nupus, “Penyelenggaraan Transaksi Keuangan Non Tunai Sebagai Sistem Pembayaran Non Sipil Belanja Dinas Pegawai Negeri Sekretariat Daerah Kota Cilegon,” AKUMULASI Indones. J. Appl. Account. Financ., vol. 2, no. 1, pp. 13–23, 2023.
Y. Ferra and S. R. Ajija, “The Influence of Non-Cash Payment Transactions on Economic Growth in 5 ASEAN Countries,” J. Ilmu Ekon. Terap., vol. 8, no. 2, pp. 272–283, 2023, doi: 10.20473/jiet.v8i2.51745.
N. Zaware, “an Analytical Study of Cashless Transformation and Growth in Retail Market in India,” SSRN Electron. J., vol. c, pp. 19–26, 2021, doi: 10.2139/ssrn.3819230.
M. Grzelczak and M. Soliwoda, “Do non-cash payments affect economic growth? Empirical evidence from EU countries,” Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser., vol. 2023, no. 166, pp. 301–317, 2023, doi: 10.29119/1641-3466.2022.166.20.
E. A. Sinambela and D. Darmawan, “Strengths and Weaknesses of Using Electronic Money as a Substitute for Cash,” J. Soc. Sci. Stud., vol. 2, no. 2, pp. 56–68, 2022, doi: 10.56348/jos3.v2i2.27.
W. Charoenwet, P. Thongtanunam, V. T. Pham, and C. Treude, Toward effective secure code reviews: an empirical study of security-related coding weaknesses, vol. 29, no. 4. 2024.
G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou, “Artificially Intelligent Electronic Money,” IEEE Consum. Electron. Mag., vol. 10, no. 4, pp. 81–89, 2021, doi: 10.1109/MCE.2020.3024512.
Gioia Arnone, “Blockchain and Cryptocurrency Innovation for a Sustainable Financial System,” Int. J. Ind. Manag., vol. 15, no. 1, pp. 1–16, 2022, doi: 10.15282/ijim.15.1.2022.8994.
F. Akhtar et al., “Potential of Blockchain Technology in Digital Currency: A Review,” 2019 16th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2019, pp. 85–91, 2019, doi: 10.1109/ICCWAMTIP47768.2019.9067546.
A. Zwitter and J. Hazenberg, “Decentralized Network Governance: Blockchain Technology and the Future of Regulation,” Front. Blockchain, vol. 3, no. March, pp. 1–12, 2020, doi: 10.3389/fbloc.2020.00012.
C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, “A Blockchain-Based Multi-Cloud Storage Data Auditing Scheme to Locate Faults,” IEEE Trans. Cloud Comput., vol. 10, no. 4, pp. 2252–2263, 2022, doi: 10.1109/TCC.2021.3057771.
H. Gupta and R. Chaudhary, “An Empirical Study of Volatility in Cryptocurrency Market,” J. Risk Financ. Manag., vol. 15, no. 11, 2022, doi: 10.3390/jrfm15110513.
F. Puoti, F. Pittorino, and M. Roveri, Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting, vol. 1, no. 1. Association for Computing Machinery, 2025.
P. Singh, D. P. Goel, and D. R. Bajaj, “A Review on Predictive Analysis of Cryptocurrencies,” SSRN Electron. J., 2024, doi: 10.2139/ssrn.4848652.
G. Attanasio, L. Cagliero, P. Garza, and E. Baralis, “Combining news sentiment and technical analysis to predict stock trend reversal,” IEEE Int. Conf. Data Min. Work. ICDMW, vol. 2019-Novem, no. i, pp. 514–521, 2019, doi: 10.1109/ICDMW.2019.00079.
Y. S. Ren, C. Q. Ma, X. L. Kong, K. Baltas, and Q. Zureigat, “Past, present, and future of the application of machine learning in cryptocurrency research,” Res. Int. Bus. Financ., vol. 63, 2022, doi: 10.1016/j.ribaf.2022.101799.
M. Ali and S. Shatabda, “A data selection methodology to train linear regression model to predict bitcoin price,” 2020 2nd Int. Conf. Adv. Inf. Commun. Technol. ICAICT 2020, no. November, pp. 330–335, 2020, doi: 10.1109/ICAICT51780.2020.9333525.
S. Ali Alahmari, “Predicting the Price of Cryptocurrency Using Support Vector Regression Methods,” J. Mech. Contin. Math. Sci., vol. 15, no. 4, pp. 313–322, 2020, doi: 10.26782/jmcms.2020.04.00023.
M. Iqbal, M. Iqbal, F. Jaskani, K. Iqbal, and A. Hassan, “Time-Series Prediction of Cryptocurrency Market using Machine Learning Techniques,” EAI Endorsed Trans. Creat. Technol., vol. 8, no. 28, p. 170286, 2021, doi: 10.4108/eai.7-7-2021.170286.
V. Saha, “Predicting Future Cryptocurrency Prices Using Machine Learning Algorithms,” J. Data Anal. Inf. Process., vol. 11, no. 04, pp. 400–419, 2023, doi: 10.4236/jdaip.2023.114021.
A. Gupta, R. Chopda, B. Chaudhary, P. Dwivedi, and S. Vhatkar, “A Comprehensive Study on Namecoin,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 9, pp. 523–527, 2022, doi: 10.22214/ijraset.2022.46538.
J. Lee, C. Liu, C. Ta, and C. Weng, “Towards Better Diagnosis Prediction Using Bidirectional Recurrent Neural Networks,” Stud. Health Technol. Inform., vol. 290, pp. 1054–1055, 2022, doi: 10.3233/SHTI220264.
G. S. Chadha, A. Panambilly, A. Schwung, and S. X. Ding, “Bidirectional deep recurrent neural networks for process fault classification,” ISA Trans., vol. 106, pp. 330–342, 2020, doi: 10.1016/j.isatra.2020.07.011.
R. K. Sharma and M. Casas, “Task-based Acceleration of Bidirectional Recurrent Neural Networks on Multi-core Architectures,” Proc. - 2022 IEEE 36th Int. Parallel Distrib. Process. Symp. IPDPS 2022, pp. 941–951, 2022, doi: 10.1109/IPDPS53621.2022.00096.
H. Apaydin, H. Feizi, M. T. Sattari, and M. S. Colak, “Comparative Analysis of Recurrent Neural Network,” Water (Switzerland), vol. 12, pp. 1–18, 2020, [Online]. Available: https://www.mdpi.com/2073-4441/12/5/1500.
H. Salman, J. Grover, and T. Shankar, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” vol. 2733, no. March, pp. 2709–2733, 2019, doi: 10.1162/NECO.
K. Devi V, J. Mani, H. Shaker, and L. Jovanovic, “Sunspot Occurrence Forecasting With Metaheuristic Optimized Recurrent Neural Networks,” Theor. Appl. Comput. Intell., vol. 1, no. 1, pp. 15–26, 2023, doi: 10.31181/taci1120231.
I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, 2024, doi: 10.3390/info15090517.
M. Ge and Y. Yuan, “Evaluation model design of project construction safety level based on bidirectional recurrent neural network (BiRNN) and bidirectional long short-term memory (BiLSTM),” PeerJ Comput. Sci., vol. 10, 2024, doi: 10.7717/peerj-cs.2351.
S. Geeitha, K. P. R. Prabha, J. Cho, and S. V. Easwaramoorthy, “Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-80472-5.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
D. C. Corresp, M. J. Warrens, G. Jurman, D. Chicco, M. J. Warrens, and G. Jurman, “Computer Science Manuscript to be reviewed The coefficient of determination R-squared is more informative than SMAPE , MAE , MAPE , MSE , and RMSE in The coefficient of determination R-squared is more informative than SMAPE , MAE , MAPE , MSE , and RMSE i,” 2021.
A. Bouzid, D. Sierra-Sosa, and A. Elmaghraby, “Directional Statistics-Based Deep Metric Learning for Pedestrian Tracking and Re-Identification,” Drones, vol. 6, no. 11, pp. 1–14, 2022, doi: 10.3390/drones6110328.