Main Article Content
Abstract
Dalam penelitian ini mikroskop berfungsi untuk melihat objek terkecil yang ada di dalam kandungan urin. Ahli Tenaga Laboratorium Medis (ATLM) merupakan tenaga kesehatan yang menggunakan mikroskop untuk pengamatan. Penelitian dilaksanakan dengan mengambil data dari Rumah Sakit Islam Yogyakarta PDHI dan mendapat 153 data pemeriksaan urin dari pasien yang datang ke Unit Gawat Darurat (UGD), rawat jalan, dan rawat inap. Dari 153 data yang diperoleh, di mana 53 di antaranya menunjukkan adanya urin dengan enam jenis kristal yang terdeteksi. Keenam jenis kristal tersebut meliputi kristal kalsium oksalat, kristal fosfat triple, fosfat amorf, kalsium karbonat, kristal amonium biurat, dan kristal asam urat. Sistem yang dikembangkan menggunakan bahasa pemrograman Python ini fokus pada identifikasi jenis kristal amorf. Dalam sistem tersebut, hasil marking yang dilakukan oleh ahli pada objek kristal berhasil dikenali oleh sistem. Sistem sudah sesuai dengan hasil yang diperoleh dari pakar. Pengujian ini menggunakan Single Decision Threshold dan memperoleh hasil nilai sensitivity sebesar 0.63 atau dalam bentuk persen yaitu 63%. Sistem mendapatkan hasil nilai specificity sebesar 0.17 atau 17%. Sistem mendapatkan hasil nilai accuracy sebesar 0.36 atau 36% dan sistem mendapatkan hasil nilai precision sebesar 0.35 atau 35%. Kinerja sistem sebesar 26%.
Keywords
Article Details
Copyright (c) 2025 Annisa Rositasari, Izzati Muhimmah, Linda Rosita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- P. A. Parwanti, N. W. D. Bintari, and D. Prihatiningsih, “PENILAIAN HASIL PEMERIKSAAN SEDIMEN URINE DENGAN VARIASI PENGAWET,” Jurnal Inovasi Pendidikan, vol. 3, no. 3, pp. 5445–5452, 2022.
- N. Vita Purwaningsih and R. Widyastuti, “Perbandingan Pemeriksaan Leukosit Urine Segar Dengan Setelah 2 Jam Di Suhu Kamar,” Surabaya : The Journal of Muhamadiyah Medical Laboratory Technologist, vol. 1, no. 2, pp. 14–20, 2018.
- M. Ariska and S. Alawiyah, “Mikroskop Digital Berbasis Kamera Smartphone,” JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), vol. 3, no. 2, pp. 108–112, Nov. 2019, doi: 10.30599/jipfri.v3i2.455.
- Agus Darmawan, I. Muhimmah, and Rahadian Kurniawan, “Integration of Microscopic Image Capturing System for Automatic Detection of Mycobacterium Tuberculosis Bacteria,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 367–375, Mar. 2023, doi: 10.29207/resti.v7i2.4495.
- P. Niawaty, R. Rikarni, and D. Yulia, “Uji Kesesuaian Hasil Pemeriksaan Sedimen Urine Metode Shih-Yung pada Volume Urine 10 mL dan 5 mL,” Jurnal Kesehatan Andalas, vol. 10, no. 2, p. 88, Sep. 2021, doi: 10.25077/jka.v10i2.1721.
- K. Hafidh and F. Asrin, “PEMODELAN SISTEM UNTUK IDENTIFIKASI STADIUM PLASMODIUM FALCIPARUM PADA CITRA MIKROSKOPIS MALARIA DENGAN TEKNIK OBJECT COUNTING,” 2023. [Online]. Available: http://ojsamik.amikmitragama.ac.id
- S. K. and B. D., “A review on various methods for recognition of urine particles using digital microscopic images of urine sediments,” Biomed Signal Process Control, vol. 68, p. 102806, Jul. 2021, doi: 10.1016/j.bspc.2021.102806.
- Q. Ji, Y. Jiang, Z. Wu, Q. Liu, and L. Qu, “An Image Recognition Method for Urine Sediment Based on Semi-supervised Learning,” IRBM, vol. 44, no. 2, p. 100739, Apr. 2023, doi: 10.1016/j.irbm.2022.09.006.
- K. Suhail and D. Brindha, “Microscopic urinary particle detection by different YOLOv5 models with evolutionary genetic algorithm based hyperparameter optimization,” Comput Biol Med, vol. 169, p. 107895, Feb. 2024, doi: 10.1016/j.compbiomed.2023.107895.
- Q. Ji, X. Li, Z. Qu, and C. Dai, “Research on Urine Sediment Images Recognition Based on Deep Learning,” IEEE Access, vol. 7, pp. 166711–166720, 2019, doi: 10.1109/ACCESS.2019.2953775.
- M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test with the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, p. 1299, Mar. 2023, doi: 10.3390/diagnostics13071299.
- H. Lyu et al., “Automated detection of multi-class urinary sediment particles: An accurate deep learning approach,” Biocybern Biomed Eng, vol. 43, no. 4, pp. 672–683, Oct. 2023, doi: 10.1016/j.bbe.2023.09.003.
- A. Yudhana et al., “Multi sensor application-based for measuring the quality of human urine on first-void urine,” Sens Biosensing Res, vol. 34, p. 100461, Dec. 2021, doi: 10.1016/j.sbsr.2021.100461.
- S. Bhahri, “Transformasi Citra Biner Menggunakan Metode Thresholding Dan Otsu Thresholding,” 2018.
- R. C. Gonzales and R. E. Woods, Digital Image Processing, Fourth Edition. Pearson Education, 2018.
References
P. A. Parwanti, N. W. D. Bintari, and D. Prihatiningsih, “PENILAIAN HASIL PEMERIKSAAN SEDIMEN URINE DENGAN VARIASI PENGAWET,” Jurnal Inovasi Pendidikan, vol. 3, no. 3, pp. 5445–5452, 2022.
N. Vita Purwaningsih and R. Widyastuti, “Perbandingan Pemeriksaan Leukosit Urine Segar Dengan Setelah 2 Jam Di Suhu Kamar,” Surabaya : The Journal of Muhamadiyah Medical Laboratory Technologist, vol. 1, no. 2, pp. 14–20, 2018.
M. Ariska and S. Alawiyah, “Mikroskop Digital Berbasis Kamera Smartphone,” JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), vol. 3, no. 2, pp. 108–112, Nov. 2019, doi: 10.30599/jipfri.v3i2.455.
Agus Darmawan, I. Muhimmah, and Rahadian Kurniawan, “Integration of Microscopic Image Capturing System for Automatic Detection of Mycobacterium Tuberculosis Bacteria,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 367–375, Mar. 2023, doi: 10.29207/resti.v7i2.4495.
P. Niawaty, R. Rikarni, and D. Yulia, “Uji Kesesuaian Hasil Pemeriksaan Sedimen Urine Metode Shih-Yung pada Volume Urine 10 mL dan 5 mL,” Jurnal Kesehatan Andalas, vol. 10, no. 2, p. 88, Sep. 2021, doi: 10.25077/jka.v10i2.1721.
K. Hafidh and F. Asrin, “PEMODELAN SISTEM UNTUK IDENTIFIKASI STADIUM PLASMODIUM FALCIPARUM PADA CITRA MIKROSKOPIS MALARIA DENGAN TEKNIK OBJECT COUNTING,” 2023. [Online]. Available: http://ojsamik.amikmitragama.ac.id
S. K. and B. D., “A review on various methods for recognition of urine particles using digital microscopic images of urine sediments,” Biomed Signal Process Control, vol. 68, p. 102806, Jul. 2021, doi: 10.1016/j.bspc.2021.102806.
Q. Ji, Y. Jiang, Z. Wu, Q. Liu, and L. Qu, “An Image Recognition Method for Urine Sediment Based on Semi-supervised Learning,” IRBM, vol. 44, no. 2, p. 100739, Apr. 2023, doi: 10.1016/j.irbm.2022.09.006.
K. Suhail and D. Brindha, “Microscopic urinary particle detection by different YOLOv5 models with evolutionary genetic algorithm based hyperparameter optimization,” Comput Biol Med, vol. 169, p. 107895, Feb. 2024, doi: 10.1016/j.compbiomed.2023.107895.
Q. Ji, X. Li, Z. Qu, and C. Dai, “Research on Urine Sediment Images Recognition Based on Deep Learning,” IEEE Access, vol. 7, pp. 166711–166720, 2019, doi: 10.1109/ACCESS.2019.2953775.
M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test with the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, p. 1299, Mar. 2023, doi: 10.3390/diagnostics13071299.
H. Lyu et al., “Automated detection of multi-class urinary sediment particles: An accurate deep learning approach,” Biocybern Biomed Eng, vol. 43, no. 4, pp. 672–683, Oct. 2023, doi: 10.1016/j.bbe.2023.09.003.
A. Yudhana et al., “Multi sensor application-based for measuring the quality of human urine on first-void urine,” Sens Biosensing Res, vol. 34, p. 100461, Dec. 2021, doi: 10.1016/j.sbsr.2021.100461.
S. Bhahri, “Transformasi Citra Biner Menggunakan Metode Thresholding Dan Otsu Thresholding,” 2018.
R. C. Gonzales and R. E. Woods, Digital Image Processing, Fourth Edition. Pearson Education, 2018.