Main Article Content
Abstract
Tomato leaf disease can cause a decline in productivity and crop failure, making early detection very important in precision farming practices. Manual detection methods, which are still commonly used in the field, have limitations in terms of speed and accuracy, requiring an automated image-based approach. Convolutional Neural Networks (CNNs) have become a leading technique in plant disease classification, but the diversity of architecture used requires systematic study to identify the most effective model. This study summarizes, compares, and evaluates CNN models for tomato leaf disease detection through a Systematic Literature Review (SLR) that adopts the PRISMA guidelines, covering the stages of identification, screening, feasibility assessment, and inclusion. A search in Scopus (2022–2025) using the query: (“Convolutional Neural Network” OR ‘CNN’) AND (‘tomato’ AND “leaf disease detection”) yielded 21 relevant articles. Analysis shows common preprocessing such as image resizing, data augmentation, and denoising. The best CNN architecture is InceptionV3 (most frequently used and high performing), followed by DenseNet201, MobileNetV2, and ResNet152V2. Architectures with optimal depth and high computational efficiency are preferred. This study provides a comprehensive map of CNN models to support architecture selection in tomato leaf disease detection. Future research directions include improving image quality, integrating attention mechanisms, semantic segmentation, and developing concise and efficient models for field applications.
Keywords
Article Details
Copyright (c) 2026 Fiki Sanora, Naufal Hafizh Mufafaq, Shofwatul Uyun

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- M. Altalak, M. A. Uddin, A. Alajmi, and A. Rizg, “A Hybrid Approach for the Detection and Classification of Tomato Leaf Diseases,” Applied Sciences (Switzerland), vol. 12, no. 16, Aug. 2022, doi: 10.3390/app12168182. DOI: https://doi.org/10.3390/app12168182
- S. P. Siregar, I. Akbari, Poningsih, A. Wanto, and Solikhun, “Enhancing Tomato Leaf Disease Detection via Optimized VGG16 and Transfer Learning Techniques,” Jurnal RESTI, vol. 9, no. 3, pp. 570–580, Jun. 2025, doi: 10.29207/resti.v9i3.6410. DOI: https://doi.org/10.29207/resti.v9i3.6410
- J. Kim, Y. Kim, D. E. Yoon, I. S. Lee, and Y. Chae, “Identification of auricular acupoints using a convolutional neural network,” Integr Med Res, vol. 15, no. 1, Mar. 2026, doi: 10.1016/j.imr.2025.101226. DOI: https://doi.org/10.1016/j.imr.2025.101226
- S. R. Ahmad, M. A. Wibowo, N. U. Handayani, D. B. Nugroho, Y. Latief, and R. Arifuddin, “Safety Knowledge Management in Construction Industry: A Systematic Literature Review of Performance Measurement Indicators,” International Journal of Engineering, Transactions B: Applications, vol. 39, no. 7, pp. 1561–1577, Jun. 2026, doi: 10.5829/ije.2026.39.07a.03. DOI: https://doi.org/10.5829/ije.2026.39.07a.03
- D. C. Rodríguez-Lira, D. M. Córdova-Esparza, J. M. Álvarez-Alvarado, J. Terven, J. A. Romero-González, and J. Rodríguez-Reséndiz, “Trends in Machine and Deep Learning Techniques for Plant Disease Identification: A Systematic Review,” Dec. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/agriculture14122188. DOI: https://doi.org/10.3390/agriculture14122188
- B. Balaji, T. Satyanarayana Murthy, and R. Kuchipudi, “A Comparative Study on Plant Disease Detection and Classification Using Deep Learning Approaches,” International Journal of Image, Graphics and Signal Processing, vol. 15, no. 3, pp. 48–59, Jun. 2023, doi: 10.5815/ijigsp.2023.03.04.
- R. Mahakud, N. Mohanty, D. Kumar Behera, B. K. Pattanayak, K. Rautaray, and B. Mohanty, “on-line version) A Hybrid Vggnet-Vision Transformer Approach For Leaf Disease Classification Using Pggan-Augmentation (on-line version,” Int J Appl Math (Sofia), vol. 38, no. 4s, p. 2025, 2025. DOI: https://doi.org/10.12732/ijam.v38i4s.261
- N. Ullah et al., “A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification,” Computers, Materials and Continua, vol. 77, no. 3, pp. 3969–3992, 2023, doi: 10.32604/cmc.2023.041819. DOI: https://doi.org/10.32604/cmc.2023.041819
- A. Batool, J. Kim, S. J. Lee, J. H. Yang, and Y. C. Byun, “An enhanced lightweight T-Net architecture based on convolutional neural network (CNN) for tomato plant leaf disease classification,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.2495. DOI: https://doi.org/10.7717/peerj-cs.2495
- A. T. Mengesha and M. A. Mengistie, “Applying transfer learning in CNN model architectures for detecting tomato leaf disease with explainable artificial intelligence,” Smart Agricultural Technology, vol. 11, Aug. 2025, doi: 10.1016/j.atech.2025.101034.
- H. Ulutaş and V. Aslantaş, “Design of Efficient Methods for the Detection of Tomato Leaf Disease Utilizing Proposed Ensemble CNN Model,” Electronics (Switzerland), vol. 12, no. 4, Feb. 2023, doi: 10.3390/electronics12040827. DOI: https://doi.org/10.3390/electronics12040827
- P. Goyal, D. K. Verma, and S. Kumar, “Diagnosis Of Plant Leaf Diseases Using Image Based Detection And Prediction Using Machine Learning Approach,” Econ Comput Econ Cybern Stud Res, vol. 57, no. 4, pp. 293–312, 2023, doi: 10.24818/18423264/57.4.23.18. DOI: https://doi.org/10.24818/18423264/57.4.23.18
- A. H. N. Hidayah, A. R. Syafeeza, N. A. Razak, W. H. M. Saad, Y. C. Wong, and A. A. Naja, “Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 790–799, Nov. 2022, doi: 10.18196/jrc.v3i6.15948. DOI: https://doi.org/10.18196/jrc.v3i6.15948
- M. H. Najim, S. K. Abdulateef, and A. H. Alasadi, “Early detection of tomato leaf diseases based on deep learning techniques,” IAES International Journal of Artificial Intelligence, vol. 13, no. 1, pp. 509–515, Mar. 2024, doi: 10.11591/ijai.v13.i1.pp509-515. DOI: https://doi.org/10.11591/ijai.v13.i1.pp509-515
- P. Saraf, J. Patil, and R. Wagh, “Enhancing Tomato Leaf Disease Detection Through Multimodal Feature Fusion,” Applied Computer Science, vol. 20, no. 4, pp. 14–38, 2024, doi: 10.35784/acs-2024-38.
- S. Poornima, N. Sripriya, A. F. Alrasheedi, S. S. Askar, and M. Abouhawwash, “Hybrid Convolutional Neural Network for Plant Diseases Prediction,” Intelligent Automation and Soft Computing, vol. 36, no. 2, pp. 2393–2409, 2023, doi: 10.32604/iasc.2023.024820. DOI: https://doi.org/10.32604/iasc.2023.024820
- J. Chen et al., “Hyperspectral imaging-driven deep learning approach: Asymptomatic stage detection and severity grading of tomato yellow leaf curl disease,” Smart Agricultural Technology, vol. 12, Dec. 2025, doi: 10.1016/j.atech.2025.101281. DOI: https://doi.org/10.1016/j.atech.2025.101281
- H. Zhou, Z. Fang, Y. Wang, and M. Tong, “Image Generation of Tomato Leaf Disease Identification Based on Small-ACGAN,” Computers, Materials and Continua, vol. 76, no. 1, pp. 175–194, 2023, doi: 10.32604/cmc.2023.037342. DOI: https://doi.org/10.32604/cmc.2023.037342
- S. Bensaadi and A. Louchene, “Low-cost convolutional neural network for tomato plant diseases classification,” IAES International Journal of Artificial Intelligence, vol. 12, no. 1, pp. 162–170, Mar. 2023, doi: 10.11591/ijai.v12.i1.pp162-170. DOI: https://doi.org/10.11591/ijai.v12.i1.pp162-170
- G. Wang, R. Xie, L. Mo, F. Ye, X. Yi, and P. Wu, “Multifactorial Tomato Leaf Disease Detection Based on Improved YOLOV5,” Symmetry (Basel), vol. 16, no. 6, Jun. 2024, doi: 10.3390/sym16060723. DOI: https://doi.org/10.3390/sym16060723
- A. Gatla et al., “Optimizing Edge AI for Tomato Leaf Disease Identification,” Engineering, Technology and Applied Science Research, vol. 14, no. 4, pp. 16061–16068, Aug. 2024, doi: 10.48084/etasr.7802.
- S. A. Patel and P. A. Barot, “Parallel Custom Deep Learning Model for Classification of Plant Leaf Disease Using Fusion of Features,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 2, pp. 50–60, 2024, doi: 10.22266/ijies2024.0430.05. DOI: https://doi.org/10.22266/ijies2024.0430.05
- T. Kumar et al., “Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network,” Computers, Materials and Continua, vol. 83, no. 3, pp. 5219–5234, 2025, doi: 10.32604/cmc.2025.062010. DOI: https://doi.org/10.32604/cmc.2025.062010
- M. Bakr, S. Abdel-Gaber, M. Nasr, and M. Hazman, “Tomato Disease Detection Model Based On Densenet And Transfer Learning,” Applied Computer Science, vol. 18, no. 2, pp. 56–70, 2022, doi: 10.35784/acs-2022-13. DOI: https://doi.org/10.35784/acs-2022-13
- B. Balaji, T. Satyanarayana Murthy, and R. Kuchipudi, “A Comparative Study on Plant Disease Detection and Classification Using Deep Learning Approaches,” International Journal of Image, Graphics and Signal Processing, vol. 15, no. 3, pp. 48–59, 2023, doi: 10.5815/ijigsp.2023.03.04. DOI: https://doi.org/10.5815/ijigsp.2023.03.04
- A. T. Mengesha and M. A. Mengistie, “Applying transfer learning in CNN model architectures for detecting tomato leaf disease with explainable artificial intelligence,” Smart Agricultural Technology, vol. 11, no. May, 2025, doi: 10.1016/j.atech.2025.101034. DOI: https://doi.org/10.1016/j.atech.2025.101034
- A. Gatla et al., “Optimizing Edge AI for Tomato Leaf Disease Identification,” Engineering, Technology and Applied Science Research, vol. 14, no. 4, pp. 16061–16068, 2024, doi: 10.48084/etasr.7802. DOI: https://doi.org/10.48084/etasr.7802
- P. Saraf, J. Patil, and R. Wagh, “Enhancing Tomato Leaf Disease Detection Through Multimodal Feature Fusion,” Applied Computer Science, vol. 20, no. 4, pp. 14–38, 2024, doi: 10.35784/acs-2024-38. DOI: https://doi.org/10.35784/acs-2024-38
- H. A. Santoso, B. Fandhi Safsalta, N. Febrianto, G. Wilujeng Saraswati, and S. C. Haw, “Comparative analysis of convolutional neural network and DenseNet121 transfer learning in agriculture focusing on crop leaf disease identification,” Applied Computing and Informatics, 2024, doi: 10.1108/ACI-03-2024-0132. DOI: https://doi.org/10.1108/ACI-03-2024-0132
- T. Kim et al., “Enhancement for Greenhouse Sustainability Using Tomato Disease Image Classification System Based on Intelligent Complex Controller,” Sustainability (Switzerland), vol. 15, no. 23, 2023, doi: 10.3390/su152316220. DOI: https://doi.org/10.3390/su152316220
- T. Uygun, S. Kiliçarslan, C. Közkurt, and M. M. Ozguven, “An Effective Feature Extraction Method for Tomato Leafminer - Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae) Classification,” Brazilian Archives of Biology and Technology, vol. 68, pp. 1–20, 2025, doi: 10.1590/1678-4324-2025240501. DOI: https://doi.org/10.1590/1678-4324-2025240501
- H. Terzioğlu, A. Gölcük, A. M. A. Shakarji, and M. Y. Al-Bayati, “Comparative Analysis of Deep Learning-Based Feature Extraction and Traditional Classification Approaches for Tomato Disease Detection,” Agronomy, vol. 15, no. 7, pp. 1–19, 2025, doi: 10.3390/agronomy15071509. DOI: https://doi.org/10.3390/agronomy15071509
- S. Ma, X. Lu, and L. Zhang, “TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds,” Applied Sciences (Switzerland), vol. 15, no. 15, pp. 1–16, 2025, doi: 10.3390/app15158406. DOI: https://doi.org/10.3390/app15158406
- P. Borugadda, R. Lakshmi, and S. Sahoo, “Transfer Learning VGG16 Model for Classification of Tomato Plant Leaf Diseases: A Novel Approach for Multi-Level Dimensional Reduction,” Pertanika J Sci Technol, vol. 31, no. 2, pp. 813–841, 2023, doi: 10.47836/pjst.31.2.09. DOI: https://doi.org/10.47836/pjst.31.2.09
References
M. Altalak, M. A. Uddin, A. Alajmi, and A. Rizg, “A Hybrid Approach for the Detection and Classification of Tomato Leaf Diseases,” Applied Sciences (Switzerland), vol. 12, no. 16, Aug. 2022, doi: 10.3390/app12168182. DOI: https://doi.org/10.3390/app12168182
S. P. Siregar, I. Akbari, Poningsih, A. Wanto, and Solikhun, “Enhancing Tomato Leaf Disease Detection via Optimized VGG16 and Transfer Learning Techniques,” Jurnal RESTI, vol. 9, no. 3, pp. 570–580, Jun. 2025, doi: 10.29207/resti.v9i3.6410. DOI: https://doi.org/10.29207/resti.v9i3.6410
J. Kim, Y. Kim, D. E. Yoon, I. S. Lee, and Y. Chae, “Identification of auricular acupoints using a convolutional neural network,” Integr Med Res, vol. 15, no. 1, Mar. 2026, doi: 10.1016/j.imr.2025.101226. DOI: https://doi.org/10.1016/j.imr.2025.101226
S. R. Ahmad, M. A. Wibowo, N. U. Handayani, D. B. Nugroho, Y. Latief, and R. Arifuddin, “Safety Knowledge Management in Construction Industry: A Systematic Literature Review of Performance Measurement Indicators,” International Journal of Engineering, Transactions B: Applications, vol. 39, no. 7, pp. 1561–1577, Jun. 2026, doi: 10.5829/ije.2026.39.07a.03. DOI: https://doi.org/10.5829/ije.2026.39.07a.03
D. C. Rodríguez-Lira, D. M. Córdova-Esparza, J. M. Álvarez-Alvarado, J. Terven, J. A. Romero-González, and J. Rodríguez-Reséndiz, “Trends in Machine and Deep Learning Techniques for Plant Disease Identification: A Systematic Review,” Dec. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/agriculture14122188. DOI: https://doi.org/10.3390/agriculture14122188
B. Balaji, T. Satyanarayana Murthy, and R. Kuchipudi, “A Comparative Study on Plant Disease Detection and Classification Using Deep Learning Approaches,” International Journal of Image, Graphics and Signal Processing, vol. 15, no. 3, pp. 48–59, Jun. 2023, doi: 10.5815/ijigsp.2023.03.04.
R. Mahakud, N. Mohanty, D. Kumar Behera, B. K. Pattanayak, K. Rautaray, and B. Mohanty, “on-line version) A Hybrid Vggnet-Vision Transformer Approach For Leaf Disease Classification Using Pggan-Augmentation (on-line version,” Int J Appl Math (Sofia), vol. 38, no. 4s, p. 2025, 2025. DOI: https://doi.org/10.12732/ijam.v38i4s.261
N. Ullah et al., “A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification,” Computers, Materials and Continua, vol. 77, no. 3, pp. 3969–3992, 2023, doi: 10.32604/cmc.2023.041819. DOI: https://doi.org/10.32604/cmc.2023.041819
A. Batool, J. Kim, S. J. Lee, J. H. Yang, and Y. C. Byun, “An enhanced lightweight T-Net architecture based on convolutional neural network (CNN) for tomato plant leaf disease classification,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.2495. DOI: https://doi.org/10.7717/peerj-cs.2495
A. T. Mengesha and M. A. Mengistie, “Applying transfer learning in CNN model architectures for detecting tomato leaf disease with explainable artificial intelligence,” Smart Agricultural Technology, vol. 11, Aug. 2025, doi: 10.1016/j.atech.2025.101034.
H. Ulutaş and V. Aslantaş, “Design of Efficient Methods for the Detection of Tomato Leaf Disease Utilizing Proposed Ensemble CNN Model,” Electronics (Switzerland), vol. 12, no. 4, Feb. 2023, doi: 10.3390/electronics12040827. DOI: https://doi.org/10.3390/electronics12040827
P. Goyal, D. K. Verma, and S. Kumar, “Diagnosis Of Plant Leaf Diseases Using Image Based Detection And Prediction Using Machine Learning Approach,” Econ Comput Econ Cybern Stud Res, vol. 57, no. 4, pp. 293–312, 2023, doi: 10.24818/18423264/57.4.23.18. DOI: https://doi.org/10.24818/18423264/57.4.23.18
A. H. N. Hidayah, A. R. Syafeeza, N. A. Razak, W. H. M. Saad, Y. C. Wong, and A. A. Naja, “Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 790–799, Nov. 2022, doi: 10.18196/jrc.v3i6.15948. DOI: https://doi.org/10.18196/jrc.v3i6.15948
M. H. Najim, S. K. Abdulateef, and A. H. Alasadi, “Early detection of tomato leaf diseases based on deep learning techniques,” IAES International Journal of Artificial Intelligence, vol. 13, no. 1, pp. 509–515, Mar. 2024, doi: 10.11591/ijai.v13.i1.pp509-515. DOI: https://doi.org/10.11591/ijai.v13.i1.pp509-515
P. Saraf, J. Patil, and R. Wagh, “Enhancing Tomato Leaf Disease Detection Through Multimodal Feature Fusion,” Applied Computer Science, vol. 20, no. 4, pp. 14–38, 2024, doi: 10.35784/acs-2024-38.
S. Poornima, N. Sripriya, A. F. Alrasheedi, S. S. Askar, and M. Abouhawwash, “Hybrid Convolutional Neural Network for Plant Diseases Prediction,” Intelligent Automation and Soft Computing, vol. 36, no. 2, pp. 2393–2409, 2023, doi: 10.32604/iasc.2023.024820. DOI: https://doi.org/10.32604/iasc.2023.024820
J. Chen et al., “Hyperspectral imaging-driven deep learning approach: Asymptomatic stage detection and severity grading of tomato yellow leaf curl disease,” Smart Agricultural Technology, vol. 12, Dec. 2025, doi: 10.1016/j.atech.2025.101281. DOI: https://doi.org/10.1016/j.atech.2025.101281
H. Zhou, Z. Fang, Y. Wang, and M. Tong, “Image Generation of Tomato Leaf Disease Identification Based on Small-ACGAN,” Computers, Materials and Continua, vol. 76, no. 1, pp. 175–194, 2023, doi: 10.32604/cmc.2023.037342. DOI: https://doi.org/10.32604/cmc.2023.037342
S. Bensaadi and A. Louchene, “Low-cost convolutional neural network for tomato plant diseases classification,” IAES International Journal of Artificial Intelligence, vol. 12, no. 1, pp. 162–170, Mar. 2023, doi: 10.11591/ijai.v12.i1.pp162-170. DOI: https://doi.org/10.11591/ijai.v12.i1.pp162-170
G. Wang, R. Xie, L. Mo, F. Ye, X. Yi, and P. Wu, “Multifactorial Tomato Leaf Disease Detection Based on Improved YOLOV5,” Symmetry (Basel), vol. 16, no. 6, Jun. 2024, doi: 10.3390/sym16060723. DOI: https://doi.org/10.3390/sym16060723
A. Gatla et al., “Optimizing Edge AI for Tomato Leaf Disease Identification,” Engineering, Technology and Applied Science Research, vol. 14, no. 4, pp. 16061–16068, Aug. 2024, doi: 10.48084/etasr.7802.
S. A. Patel and P. A. Barot, “Parallel Custom Deep Learning Model for Classification of Plant Leaf Disease Using Fusion of Features,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 2, pp. 50–60, 2024, doi: 10.22266/ijies2024.0430.05. DOI: https://doi.org/10.22266/ijies2024.0430.05
T. Kumar et al., “Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network,” Computers, Materials and Continua, vol. 83, no. 3, pp. 5219–5234, 2025, doi: 10.32604/cmc.2025.062010. DOI: https://doi.org/10.32604/cmc.2025.062010
M. Bakr, S. Abdel-Gaber, M. Nasr, and M. Hazman, “Tomato Disease Detection Model Based On Densenet And Transfer Learning,” Applied Computer Science, vol. 18, no. 2, pp. 56–70, 2022, doi: 10.35784/acs-2022-13. DOI: https://doi.org/10.35784/acs-2022-13
B. Balaji, T. Satyanarayana Murthy, and R. Kuchipudi, “A Comparative Study on Plant Disease Detection and Classification Using Deep Learning Approaches,” International Journal of Image, Graphics and Signal Processing, vol. 15, no. 3, pp. 48–59, 2023, doi: 10.5815/ijigsp.2023.03.04. DOI: https://doi.org/10.5815/ijigsp.2023.03.04
A. T. Mengesha and M. A. Mengistie, “Applying transfer learning in CNN model architectures for detecting tomato leaf disease with explainable artificial intelligence,” Smart Agricultural Technology, vol. 11, no. May, 2025, doi: 10.1016/j.atech.2025.101034. DOI: https://doi.org/10.1016/j.atech.2025.101034
A. Gatla et al., “Optimizing Edge AI for Tomato Leaf Disease Identification,” Engineering, Technology and Applied Science Research, vol. 14, no. 4, pp. 16061–16068, 2024, doi: 10.48084/etasr.7802. DOI: https://doi.org/10.48084/etasr.7802
P. Saraf, J. Patil, and R. Wagh, “Enhancing Tomato Leaf Disease Detection Through Multimodal Feature Fusion,” Applied Computer Science, vol. 20, no. 4, pp. 14–38, 2024, doi: 10.35784/acs-2024-38. DOI: https://doi.org/10.35784/acs-2024-38
H. A. Santoso, B. Fandhi Safsalta, N. Febrianto, G. Wilujeng Saraswati, and S. C. Haw, “Comparative analysis of convolutional neural network and DenseNet121 transfer learning in agriculture focusing on crop leaf disease identification,” Applied Computing and Informatics, 2024, doi: 10.1108/ACI-03-2024-0132. DOI: https://doi.org/10.1108/ACI-03-2024-0132
T. Kim et al., “Enhancement for Greenhouse Sustainability Using Tomato Disease Image Classification System Based on Intelligent Complex Controller,” Sustainability (Switzerland), vol. 15, no. 23, 2023, doi: 10.3390/su152316220. DOI: https://doi.org/10.3390/su152316220
T. Uygun, S. Kiliçarslan, C. Közkurt, and M. M. Ozguven, “An Effective Feature Extraction Method for Tomato Leafminer - Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae) Classification,” Brazilian Archives of Biology and Technology, vol. 68, pp. 1–20, 2025, doi: 10.1590/1678-4324-2025240501. DOI: https://doi.org/10.1590/1678-4324-2025240501
H. Terzioğlu, A. Gölcük, A. M. A. Shakarji, and M. Y. Al-Bayati, “Comparative Analysis of Deep Learning-Based Feature Extraction and Traditional Classification Approaches for Tomato Disease Detection,” Agronomy, vol. 15, no. 7, pp. 1–19, 2025, doi: 10.3390/agronomy15071509. DOI: https://doi.org/10.3390/agronomy15071509
S. Ma, X. Lu, and L. Zhang, “TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds,” Applied Sciences (Switzerland), vol. 15, no. 15, pp. 1–16, 2025, doi: 10.3390/app15158406. DOI: https://doi.org/10.3390/app15158406
P. Borugadda, R. Lakshmi, and S. Sahoo, “Transfer Learning VGG16 Model for Classification of Tomato Plant Leaf Diseases: A Novel Approach for Multi-Level Dimensional Reduction,” Pertanika J Sci Technol, vol. 31, no. 2, pp. 813–841, 2023, doi: 10.47836/pjst.31.2.09. DOI: https://doi.org/10.47836/pjst.31.2.09