Main Article Content
Abstract
Indonesia is a country that is very prone to earthquake disasters. Earthquakes cause damage especially to buildings. In building planning, the usual earthquake load is the earthquake load from the spectral response. The use of earthquake loads from time history is very rarely used because of the difficulty of finding accurate data for an area. In this study, Alana Hotel and Apartment were chosen as research objects to find artificial time history. All earthquake data affecting Yogyakarta region were collected from several sources. Seismic hazard analysis in this study uses the PSHA (Probabilistic Seismic Hazard Analysis) method by calculating the main earthquake only. The selection of attenuation functions is based on the similarity of geological and tectonic conditions in Indonesia. These attenuation functions produce a seismic hazard curve and a uniform hazard spectrum response. The selection of time history data for bedrock is based on the results of the deaggregation process in the form of dominant magnitude and dominant distance from the subduction earthquake source. It is necessary to adjust the spectrum response in the time history data to fit the research location. Furthermore, earthquake waves from the bedrock are propagated to the surface. The results show that the peak time history acceleration value after surface propagation increased by 1.51 times than the time history in bedrock.
Keywords
Article Details
Copyright (c) 2023 Teknisia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Under the following term:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
- Aldiamar, F. (2007). Analisa Resiko Gempa dan Pembuatan Respon Spektra Desain untuk Jembatan Suramadu dengan Permodelan Sumber Gempa 3D, Program Pascasarjana Fakultas Teknik Sipil dan Perencanaan, ITB, Bandung.
- Asrurifak, M. (2020). Peta Respon Spektra Indonesia untuk Perencanaan Struktur Bangunan Tahan Gempa dengan Model Sumber Tiga Dimensi dalam Analisis Probabilistik. Disertasi, Institut Teknologi Bandung, Bandung.
- Bock, R. Genrich J. F., McCaffrey, Y., Calais, E., Stevens, C.W., & Subarya, C. (1996). Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements, Tectonics, 15, 288-295.
- Campbell, K.W. & Bozorgnia, Y. (2008). NGA Ground Motion Model for Geometric Mean Component of PGA, PGV, PGD and 5% Dumped Linier Elastic Respon Spectra for Periods Ranging from 0.01 s to 10.0 s. Earthquake Spectra. The Profesional Journal of Pasific Earthquake Engineering Research Institute (EERI), Vol. 24 (1). 139-171.
- Cornell, C.A. (1968), Engineering Seismic Risk Analysis, Bulletin of the Seismological Society of America, Vol. 58, 1583-1606.
- Erlangga, W. (2018). Response Evaluation of Multi-story Building Structures Using FEMA 310 and ATC-40 Based on the Time History of Seismic Hazard Analysis. MS Thesis. Department of Civil Engineering, Islamic University of Indonesia. Yogyakarta.
- Erlangga, W. (2020). Karakteristik dan Parameter Subduksi Sumber Gempa Pulau Jawa. Teknisia, Vol 25 (2). 88-98.
- Erlangga, W., Makrup, L., & Musthofa, M. (2022). Evaluasi Struktur Gedung Fakultas Hukum Universitas Islam Indonesia Yogyakarta Berdasarkan Percepatan Gempa yang dihitung Secara Probabilistik. Teknisia. Vol 27 (1). 34-35.
- Erlangga, W., Teguh, M., & Makrup. L. (2020). The analysis of performance level on an existing multi-story building structure using the time history based on the subduction earthquake source. 4th International Conference on Earthquake Engineering & Disaster Mitigation (ICEEDM 2019). E3S Web of Conferences. Vol 156. https://doi.org/10.1051/e3sconf/202015605011.
- Erlangga, W., Teguh, M., & Saputro, I.T., (2020). Development of Time Histories Based on Shallow Crustal Earthquake Sources Considering the New Version of the Indonesian Earthquake Map. International Conference on Sustainable Civil Engineering Structures and Construction Materials. Springer Nature Singapore. 483-496.
- Erlangga, W., Teguh, M., Mushthofa, M., Saputro, I.T., & Setiadi, G., (2022). Sebaran Gempa Utama berdasarkan magnitude dan kedalaman di wilayah Mamuju dan Sekitarnya. Teknisia, Vol 27 (2). 122-131.
- Fauzi, U. J. (2011). Peta Deagregasi Indonesia Berdasarkan Analisis Probabilitas Dengan Sumber Gempa Tiga Dimensi. Tesis, Institut Teknologi Bandung, Bandung.
- Gardner, J. K. & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?, Bulletin of the Seismological Society of America 64 (1). 363–367.
- Irsyam, M., Sengara I.W., Adiamar, F., Widiyantoro, S., Triyoso, W., Natawidjaja, D.H., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M., & Ridwan, M. (2010). Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia. Bandung.
- Mahesworo, R. P. (2008). Usulan Ground Motion Untuk Empat Kota Besar Di Wilayah Sumatera Berdasarkan Hasil Analisis Seismic Hazard Menggunakan Model Sumber Gempa 3 Dimensi, Tesis, Institut Teknologi Bandung.
- Makrup, L. (2009). Pengembangan Peta Deagregasi Hazard untuk Indonesia Melalui Pembuatan Software dengan Pemodelan Sumber Gempa Tiga Dimensi. Disertasi. Institut Teknologi Bandung. Indonesia.
- McGuire, R. K. (1976), FORTRAN computer program for seismic risk analysis. U.S. Geol. Surv. Open-File Rept. 76-67.
- Milson, J., Masson D., Nichols G., Sikumbang N., Dwiyanto B., Parson L., & Kallagher H. (1992). The Manokwari Trough and The Western End of The New Guinea Trench, Tectonics, 11, 145-153.
- Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat.
- SNI 1726-2002. (2002). Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung. Departemen Pemukiman dan Prasarana Wilayah. Bandung
- Sulistyanto, I. G. (2009), Geografi 1 : untuk Sekolah Menengah Atas/Madrasah Aliyah Kelas X. Departemen Pendidikan Nasional. Jakarta.
- Teguh, M. & Erlangga,W. (2019). Comparison of Bedrock and Surface Time Histories Subjected to Subduction Earthquake in a Selected Location of Yogyakarta, Journal of GEOMATE. Vol 17 (63). 77-86.
- Widiyantoro, S. (2009). Seismicity and Structure of Lithosperic Slab Beneath The Sunda Arc, Indonesia. SE Asian Gateway Evolution International Conference. Royal Holloway University of London. 2009.
- Widodo. (2012), Seismologi Teknik & Rekayasa Kegempaan. Pustaka Pelajar. Yogyakarta
- Wiemer, S. (2001). A software package to analyze seismicity: ZMAP, Seismological Research Letters, 373–382.
References
Aldiamar, F. (2007). Analisa Resiko Gempa dan Pembuatan Respon Spektra Desain untuk Jembatan Suramadu dengan Permodelan Sumber Gempa 3D, Program Pascasarjana Fakultas Teknik Sipil dan Perencanaan, ITB, Bandung.
Asrurifak, M. (2020). Peta Respon Spektra Indonesia untuk Perencanaan Struktur Bangunan Tahan Gempa dengan Model Sumber Tiga Dimensi dalam Analisis Probabilistik. Disertasi, Institut Teknologi Bandung, Bandung.
Bock, R. Genrich J. F., McCaffrey, Y., Calais, E., Stevens, C.W., & Subarya, C. (1996). Accretion of the southern Banda arc to the Australian plate margin determined by Global Positioning System measurements, Tectonics, 15, 288-295.
Campbell, K.W. & Bozorgnia, Y. (2008). NGA Ground Motion Model for Geometric Mean Component of PGA, PGV, PGD and 5% Dumped Linier Elastic Respon Spectra for Periods Ranging from 0.01 s to 10.0 s. Earthquake Spectra. The Profesional Journal of Pasific Earthquake Engineering Research Institute (EERI), Vol. 24 (1). 139-171.
Cornell, C.A. (1968), Engineering Seismic Risk Analysis, Bulletin of the Seismological Society of America, Vol. 58, 1583-1606.
Erlangga, W. (2018). Response Evaluation of Multi-story Building Structures Using FEMA 310 and ATC-40 Based on the Time History of Seismic Hazard Analysis. MS Thesis. Department of Civil Engineering, Islamic University of Indonesia. Yogyakarta.
Erlangga, W. (2020). Karakteristik dan Parameter Subduksi Sumber Gempa Pulau Jawa. Teknisia, Vol 25 (2). 88-98.
Erlangga, W., Makrup, L., & Musthofa, M. (2022). Evaluasi Struktur Gedung Fakultas Hukum Universitas Islam Indonesia Yogyakarta Berdasarkan Percepatan Gempa yang dihitung Secara Probabilistik. Teknisia. Vol 27 (1). 34-35.
Erlangga, W., Teguh, M., & Makrup. L. (2020). The analysis of performance level on an existing multi-story building structure using the time history based on the subduction earthquake source. 4th International Conference on Earthquake Engineering & Disaster Mitigation (ICEEDM 2019). E3S Web of Conferences. Vol 156. https://doi.org/10.1051/e3sconf/202015605011.
Erlangga, W., Teguh, M., & Saputro, I.T., (2020). Development of Time Histories Based on Shallow Crustal Earthquake Sources Considering the New Version of the Indonesian Earthquake Map. International Conference on Sustainable Civil Engineering Structures and Construction Materials. Springer Nature Singapore. 483-496.
Erlangga, W., Teguh, M., Mushthofa, M., Saputro, I.T., & Setiadi, G., (2022). Sebaran Gempa Utama berdasarkan magnitude dan kedalaman di wilayah Mamuju dan Sekitarnya. Teknisia, Vol 27 (2). 122-131.
Fauzi, U. J. (2011). Peta Deagregasi Indonesia Berdasarkan Analisis Probabilitas Dengan Sumber Gempa Tiga Dimensi. Tesis, Institut Teknologi Bandung, Bandung.
Gardner, J. K. & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?, Bulletin of the Seismological Society of America 64 (1). 363–367.
Irsyam, M., Sengara I.W., Adiamar, F., Widiyantoro, S., Triyoso, W., Natawidjaja, D.H., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M., & Ridwan, M. (2010). Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia. Bandung.
Mahesworo, R. P. (2008). Usulan Ground Motion Untuk Empat Kota Besar Di Wilayah Sumatera Berdasarkan Hasil Analisis Seismic Hazard Menggunakan Model Sumber Gempa 3 Dimensi, Tesis, Institut Teknologi Bandung.
Makrup, L. (2009). Pengembangan Peta Deagregasi Hazard untuk Indonesia Melalui Pembuatan Software dengan Pemodelan Sumber Gempa Tiga Dimensi. Disertasi. Institut Teknologi Bandung. Indonesia.
McGuire, R. K. (1976), FORTRAN computer program for seismic risk analysis. U.S. Geol. Surv. Open-File Rept. 76-67.
Milson, J., Masson D., Nichols G., Sikumbang N., Dwiyanto B., Parson L., & Kallagher H. (1992). The Manokwari Trough and The Western End of The New Guinea Trench, Tectonics, 11, 145-153.
Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat.
SNI 1726-2002. (2002). Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung. Departemen Pemukiman dan Prasarana Wilayah. Bandung
Sulistyanto, I. G. (2009), Geografi 1 : untuk Sekolah Menengah Atas/Madrasah Aliyah Kelas X. Departemen Pendidikan Nasional. Jakarta.
Teguh, M. & Erlangga,W. (2019). Comparison of Bedrock and Surface Time Histories Subjected to Subduction Earthquake in a Selected Location of Yogyakarta, Journal of GEOMATE. Vol 17 (63). 77-86.
Widiyantoro, S. (2009). Seismicity and Structure of Lithosperic Slab Beneath The Sunda Arc, Indonesia. SE Asian Gateway Evolution International Conference. Royal Holloway University of London. 2009.
Widodo. (2012), Seismologi Teknik & Rekayasa Kegempaan. Pustaka Pelajar. Yogyakarta
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP, Seismological Research Letters, 373–382.