Main Article Content

Abstract

Ranitidine, a histamine H2-antagonist, has an oral bioavailability of 50-60% and an elimination half-life of approximately 2 to 3 hours. To enhance its therapeutic efficacy, ranitidine must remain in the stomach for an extended period. A mucoadhesive gastroretentive drug delivery system can improve its bioavailability. This study formulated ranitidine granules using sodium alginate as a polymer via wet granulation. Formulations with varying sodium alginate concentrations (7-11%) were prepared and evaluated for flow properties, tapping properties, moisture content, swelling capacity, and dissolution. The formulation with 11% sodium alginate demonstrated optimal properties. It achieved a flow rate of 12.3±0.23 g/s, an angle of repose of 27.13±0.63°, a compressibility index of 21.35±2.23%, a Hausner ratio of 1.32±0.07, a moisture content of 2.59±0.2%, a swelling index of 72.85±3.48%, and a wash-off time of 77.34±48.75 minutes. Additionally, over 80% of the drug was dissolved. In conclusion, the 11% sodium alginate formulation is the most promising for mucoadhesive ranitidine delivery.

Keywords

ranitidine gastric Mucoadhesive Sodium alginate

Article Details

How to Cite
Ifa Nurazizah, Suparmi, & Kusuma, A. P. (2025). Retention of Sodium Alginate-Based Mucoadhesive Ranitidine . EKSAKTA: Journal of Sciences and Data Analysis, 6(2). https://doi.org/10.20885/EKSAKTA.vol6.iss2.art7

References

  1. Lexi-comp, Drug Information Handbook: A Comprehensive Resource for All Clinicians and Healthcare Professionals. Lexi-Comp, Inc, 2010.
  2. A. C. Moffat, M. D. Osselton, and B. Widdop (ed), Clarke’s Analysis of Drugs and Poisons, 3rd ed. London: Pharmaceutical Press, 2005.
  3. R. Garg and G. D. Gupta, “Progress in Controlled Gastroretentive Delivery systems,” Trop. J. Pharm. Res., vol. 7, no. 3, pp. 1055–1066, 2008.
  4. U. K. Mandal, B. Chatterjee, and F. G. Senjoti, “Gastro-retentive drug delivery systems and their in vivo success: A recent update,” Asian J. Pharm. Sci., vol. 11, no. 5, pp. 575–584, 2016, doi: 10.1016/j.ajps.2016.04.007.
  5. P. L. Bardonnet, V. Faivre, W. J. Pugh, Piffaretti, and F. Falson, “Gastroretentive Dosage Forms: Overview and Special Case of Helicobacter Pylori,” J. Control. Release, vol. 111, pp. 1–18, 2006.
  6. G. Mythri, K. Kavitha, K. MR, and S. J. Singh, “Novel Mucoadhesive Polymers - A Review,” J Appl Pharm Sci, vol. 01, no. 08, pp. 37–42, 2011.
  7. R. B. Mangesh, “Formulation of Mucoadhesive Gastric Retentive Drug Delivery Using Thiolated Xylogluca,” Carbohydr. Polym., vol. 136, pp. 537–542, 2016.
  8. A. Widayanti, A. Halim, and M. Suardi, “Formulasi Mukoadhesif Nifedipin Menggunakan Kombinasi Polimer Carbopol 943 dan Gelatin Type B,” Farmasains, vol. 1, no. 3, pp. 144–149, 2011.
  9. M. dan N. D. Salman, “Formulasi Granul Mukoadhesif Dispersi Padat Ketoprofen-PVP K-30 Menggunakan Kitosan,” J Sains dan Teknol Farm, vol. 18, no. 1, pp. 49–55, 2013.
  10. R. C. Rowe, P. J. Sheskey, and M. E. Quinn (ed), Handbook of Pharmaceutical Excipients, 6th ed. London - Chicago, 2009. doi: 10.1080/09602011003593423.
  11. D. P. Vipul, K. J. Girish, A. Tohra, Khutliwala, and S. Z. Bhumi, “Raft Forming System - An Upcoming Approach of Gastroretentive Drug Delivery System,” J. Control. Release, vol. 168, pp. 151–165, 2013.
  12. A. R. Mackie, A. Macierzanka, and K. Aarak, “Sodium Alginate Decreases the Permeability of Intestinal Mucus,” Food Hydrocoll., vol. 52, pp. 749–755, 2016.
  13. E. D. Ikasari, A. B. Utomo, A. Setyopuspito, D. Adhityaasmara, and H. Setyowati, “Evaluation of Antiulcer Activity of Mucoadhesive Microgranules Containing Ranitidine Hydrochloride in Experimental Rats,” Int. J. Curr. Pharm. Res., vol. 9, no. 1, p. 45, 2016, doi: 10.22159/ijcpr.2017v9i1.16605.
  14. N. T. Hwisa, S. K. Adiki, P. Katakam, and B. R. Chandu, “Design of dissolution media for in-vitro bioequivalence testing of lamivudine,” J. Appl. Pharm. Sci., vol. 3, no. 6, pp. 106–110, 2013, doi: 10.7324/JAPS.2013.3617.
  15. R. Awaluddin, A. W. Prasetya, Y. Nugraha, M. F. Suweleh, A. P. Kusuma, and O. Indrati, “Physical modification and characterization of starch using pregelatinization and co-process of various tubers from Yogyakarta as an excipient,” in AIP Conference Proceedings, 2017. doi: 10.1063/1.4978184.
  16. USP, The United States Pharmacopeia 39-The National Formulary 34. 2016.
  17. B. Nigusse, T. Gebre-Mariam, and A. Belete, “Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride,” PLoS One, vol. 16, no. 6 June, pp. 1–16, 2021, doi: 10.1371/journal.pone.0253391.
  18. C. C. Sun, “Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose,” Int. J. Pharm., vol. 346, no. 1–2, pp. 93–101, 2008, doi: 10.1016/j.ijpharm.2007.06.017.
  19. R. Audita, K. Khoirunisa, H. A. Azzahra’, B. H. Nugroho, H. Hidayat, and I. Fatimah, “Composite of Polylactic Acid/Chitosan/Ag-Hydroxyapatite Synthesized Using Turmeric Leaves Extract-Mediated Silver Nanoparticle and Snail Shell as Antibacterial Material,” EKSAKTA J. Sci. Data Anal., vol. 2, no. 2, pp. 116–123, 2021, doi: 10.20885/eksakta.vol2.iss2.art5.
  20. P. Thapa, A. R. Lee, D. H. Choi, and S. H. Jeong, “Effects of moisture content and compression pressure of various deforming granules on the physical properties of tablets,” Powder Technol., vol. 310, pp. 92–102, 2017, doi: https://doi.org/10.1016/j.powtec.2017.01.021.
No Related Submission Found