Main Article Content



Purpose – This study aims to analyze the determinants of agriculture in Indonesia, represented by the variables of labor, land, fertilizer, and rainfall from 1991 to 2018.

Methods – This study uses the time series method by utilizing aggregate data at the national level in Indonesia. The method used in this research is the cointegration and error correction model (ECM).

Findings – The results of this study indicate that in the short term, the factors that determine agricultural conditions in Indonesia are the amount of land and the use of fertilizers which show a positive impact. Meanwhile, the long-term results show that all variables, namely labor, land, fertilizer, and rainfall, impact agricultural conditions in Indonesia. The adjustment in the short-term to long-term process is shown that there is an adjustment for agricultural conditions in Indonesia.

Implication – This study indicates that the policies carried out by the government in the agricultural sector are important for internal aspects, namely labor, land, and fertilizer, and external effects such as climate change so that appropriate policy interventions can increase agricultural production in Indonesia.

Originality – This research contributes to modeling the determinants of the agricultural sector in Indonesia with the error correction model (ECM).



Tujuan – Penelitian ini bertujuan untuk menganalisis determinan pertanian di Indonesia yang diwakili oleh variabel tenaga kerja, tanah, pupuk, dan curah hujan tahun 1991 sampai dengan tahun 2018.

Metode – Penelitian ini menggunakan metode time series dengan memanfaatkan data agregat tingkat nasional di Indonesia. Metode yang digunakan dalam penelitian ini adalah kointegrasi dan error correction model (ECM).

Temuan – Hasil penelitian ini menunjukkan bahwa dalam jangka pendek faktor yang menentukan kondisi pertanian di Indonesia adalah jumlah lahan dan penggunaan pupuk yang menunjukkan dampak positif. Sementara itu, hasil jangka panjang menunjukkan bahwa semua variabel yaitu tenaga kerja, tanah, pupuk, dan curah hujan mempengaruhi kondisi pertanian di Indonesia. Penyesuaian dalam proses jangka pendek ke jangka panjang menunjukkan adanya penyesuaian kondisi pertanian di Indonesia.

Implikasi – Penelitian ini menunjukkan bahwa kebijakan yang dilakukan pemerintah di bidang pertanian penting untuk aspek internal yaitu tenaga kerja, lahan, dan pupuk, serta terhadap dampak eksternal seperti perubahan iklim sehingga intervensi kebijakan yang tepat dapat meningkatkan produksi pertanian di Indonesia.

Orisinalitas – Penelitian ini berkontribusi dalam memodelkan determinan sektor pertanian di Indonesia dengan model error correction model (ECM).


Agriculture Error Correction Model Cointegration Climate Change

Article Details

How to Cite
Anwar, A. (2022). The determinant of agriculture development in Indonesia. Jurnal Kebijakan Ekonomi Dan Keuangan, 1(2), 153–164.


  1. Abman, R., & Carney, C. (2020). Land rights, agricultural productivity, and deforestation. Food Policy, 94(November 2019), 101841.
  2. Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1999). Effects of global climate change on agriculture: An interpretative review. Climate Research, 11(1), 19–30.
  3. Ali, Q., Raza, A., Narjis, S., Saeed, S., & Khan, M. T. I. (2020). Potential of renewable energy, agriculture, and financial sector for the economic growth: Evidence from politically free, partly free and not free countries. Renewable Energy, 162, 934–947.
  4. Anik, A. R., Rahman, S., & Sarker, J. R. (2017). Agricultural Productivity Growth and the Role of Capital in South Asia (1980-2013). Sustainability, 9(3), 1–24.
  5. Bai, Y., Dai, J., Huang, W., Tan, T., & Zhang, Y. (2021). Water conservation policy and agricultural economic growth: Evidence of grain to green project in China. Urban Climate, 40(September), 100994.
  6. Barichello, R., & Patunru, A. (2009). Agriculture in Indonesia: lagging performance and difficult choices. Choices. The Magazine of Food, Farm, and Resource Issues A, 24(2), 37–41.
  7. Barrios, S., Ouattara, B., & Strobl, E. (2008). The impact of climatic change on agricultural production: Is it different for Africa? Food Policy, 33(4), 287–298.
  8. Bashir, A., Suhel, S., Azwardi, A., Atiyatna, D. P., Hamidi, I., & Adnan, N. (2019). The Causality Between Agriculture, Industry, and Economic Growth: Evidence from Indonesia. Etikonomi, 18(2), 155–168.
  9. Bashir, A., & Susetyo, D. (2018). the Relationship Between Economic Growth, Human Capital, and Agriculture Sector: Empirical Evidence From Indonesia. International Journal of Food and Agricultural Economics, 6(4), 35–52.
  10. Ben, M., Huchet-bourdon, M., & Zitouna, H. (2015). The role of sectoral FDI in promoting agricultural production and improving food security. International Economics, 1–16.
  11. Brückner, M. (2012). Economic growth, size of the agricultural sector, and urbanization in Africa. Journal of Urban Economics, 71(1), 26–36.
  12. Chopra, R., Magazzino, C., Shah, M. I., Sharma, G. D., Rao, A., & Shahzad, U. (2022). The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity? Resources Policy, 76(September 2021), 102578.
  13. Dethier, J. J., & Effenberger, A. (2012). Agriculture and development: A brief review of the literature. Economic Systems, 36(2), 175–205.
  14. Dickey, D., & Fuller, W. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057–1072.
  15. Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction : Representation , Estimation , and Testing. Econometrica, 55(2), 251–276.
  16. Ghatak, A., & Madheswaran, S. (2013). Impact of Health on Farm Production in West Bengal , India. Bangladesh Development Studies, XXXVI(1), 55–78.
  17. Giannakis, E., & Bruggeman, A. (2018). Exploring the labour productivity of agricultural systems across European regions: A multilevel approach. Land Use Policy, 77(December 2017), 94–106.
  18. Gollin, B. D., Lagakos, D., & Waugh, M. E. (2017). Agricultural Productivity Differences across Countries. PAPERS AND PROCEEDINGS OF One Hundred Twenty-Sixth Annual Meeting OF THE AMERICAN ECONOMIC ASSOCIATION, 104(5), 165–170.
  19. Gottlieb, C., & Grobovšek, J. (2019). Communal land and agricultural productivity. Journal of Development Economics, 138(July 2018), 135–152.
  20. Granger, C. W. . (1981). Some Properties of Time Series Data and Their Use in Econometric Model Specification. Journal of Econometrics, 16, 121–130.
  21. Granger, C. W. J. (1986). Developments in the Study of Cointegrated Economic Variables. Oxford Bulletin of Economics and Statistics, 48(3), 213–228.
  22. Headey, D., Alauddin, M., & Rao, D. S. P. (2010). Explaining agricultural productivity growth: An international perspective. Agricultural Economics, 41(1), 1–14.
  23. Iglesias, A., Mougou, R., Moneo, M., & Quiroga, S. (2011). Towards adaptation of agriculture to climate change in the Mediterranean. Regional Environmental Change, 11(SUPPL. 1), 159–166.
  24. Le, K. (2020). Land use restrictions, misallocation in agriculture, and aggregate productivity in Vietnam. Journal of Development Economics, 145(March), 102465.
  25. Luo, Y., Long, X., Wu, C., & Zhang, J. (2017). Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. Journal of Cleaner Production, 159, 220–228.
  26. Maisonnave, H., & Mamboundou, P. N. (2022). Agricultural economic reforms, gender inequality and poverty in Senegal. Journal of Policy Modeling, 44(2), 361–374.
  27. Mamba, E., & Ali, E. (2022). Do agricultural exports enhance agricultural (economic) growth? Lessons from ECOWAS countries. Structural Change and Economic Dynamics, 63(October), 257–267.
  28. McArthur, J. W., & McCord, G. C. (2017). Fertilizing growth: Agricultural inputs and their effects in economic development. Journal of Development Economics, 127(February), 133–152.
  29. Rada, N. E., Buccola, S. T., & Fuglie, K. O. (2011). Government policy and agricultural productivity in Indonesia. American Journal of Agricultural Economics, 93(3), 863–880.
  30. Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., Rahman, M., & Mahmood, A. (2022). Nexus between economic growth, energy use, urbanization, agricultural productivity, and carbon dioxide emissions: New insights from Bangladesh. Energy Nexus, 8(September), 100144.
  31. Raihan, A., & Tuspekova, A. (2022). Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Development Sustainability, 1(June), 100019.
  32. Rehman, A., Alam, M. M., Alvarado, R., Işık, C., Ahmad, F., Cismas, L. M., & Mungiu Pupazan, M. C. (2022). Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. Journal of Cleaner Production, 375, 134178.
  33. Tran, D., Vu, H. T., & Goto, D. (2022). Agricultural land consolidation, labor allocation and land productivity: A case study of plot exchange policy in Vietnam. Economic Analysis and Policy, 73, 455–473.
  34. Wang, H. (2022). Role of environmental degradation and energy use for agricultural economic growth: Sustainable implications based on ARDL estimation. Environmental Technology and Innovation, 25, 102028.
  35. Yamamoto, Y., Shigetomi, Y., Ishimura, Y., & Hattori, M. (2019). Forest change and agricultural productivity: Evidence from Indonesia. World Development, 114, 196–207.