Main Article Content

Abstract

Purpose – This research measures the perceptions of ride-hailing (Gojek) users on the Playstore review page.
Design/methodology/approach – This research uses qualitative analysis and a sentiment analysis approach. The primary data for this research comes from 5000 user reviews of the Gojek application on the Play Store application. Data collection was carried out with the help of the Ncapture tool in Chrome, which was then exported to the NVivo 12 Plus software in a PDF file. This research uses NVivo 12 Plus software to visualize coding data for several reviews from Google Playstore.
Findings – The research results show that the perception of Gojek application users is dominated by negative criteria, nuances of disappointment with the driver's behaviour, and application errors that flood the reviews. The ratings given by users are dominated by the number one, which indicates the lowest point.
Research limitations/implications – This research provides a theoretical contribution that the sentiment analysis approach is one of the instruments successful in revealing user perceptions of a service application.
Practical implications – This research provides a practical contribution to the Gojek application company in that user reviews can influence customer intentions, so it is necessary to carry out routine improvements and serious in-depth evaluations by considering reviews from earlier users.
Originality/value – This study fills the gap regarding online transportation user sentiment by utilizing big data from reviews on Google Playstore.

Keywords

ride hailing gojek sharing economy sentiment analysis

Article Details

How to Cite
Amri, P., Suri, D. M., & Syuhada. (2024). The analysis of ride hailing user characteristics from app reviews. Jurnal Siasat Bisnis, 28(2), 241–262. https://doi.org/10.20885/jsb.vol28.iss2.art7

References

  1. Abend, N. I., De-Juan-Vigaray, M. D., & Nuszbaum, M. (2023). An Experimental Study of How Missing Employee Empathy in Failed Service Interactions Affects Empathetic Customers’ EWoM-Giving Behaviour. Administrative Sciences, 13(5), 123. https://doi.org/10.3390/admsci13050123
  2. Agarwal, A., Biadsy, F., & Mckeown, K. R. (2009). Contextual Phrase-Level Polarity Analysis using Lexical Affect Scoring and Syntactic N-grams. Proceedings of the 12th Conference of the European Chapter of the ACL, 24–32. https://aclanthology.org/E09-1004.pdf
  3. Ahmed, R. R., Vveinhardt, J., Štreimikienė, D., Ashraf, M., & Channar, Z. A. (2017). Modified SERVQUAL model and effects of customer attitude and technology on customer satisfaction in banking industry: mediation, moderation and conditional process analysis. Journal of Business Economics and Management, 18(5), 974–1004. https://doi.org/10.3846/16111699.2017.1368034
  4. Akhtar, M. S., Gupta, D., Ekbal, A., & Bhattacharyya, P. (2017). Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis. Knowledge-Based Systems, 125, 116–135. https://doi.org/10.1016/j.knosys.2017.03.020
  5. Alemi, F., Circella, G., Handy, S., & Mokhtarian, P. (2018). What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California. Travel Behaviour and Society, 13, 88–104. https://doi.org/10.1016/j.tbs.2018.06.002
  6. Allen, J., & Farber, S. (2020). Planning transport for social inclusion: An accessibility-activity participation approach. Transportation Research Part D: Transport and Environment, 78, 102212. https://doi.org/10.1016/j.trd.2019.102212
  7. AlOmari, F. (2021). Measuring gaps in healthcare quality using SERVQUAL model: challenges and opportunities in developing countries. Measuring Business Excellence, 25(4), 407–420. https://doi.org/10.1108/MBE-11-2019-0104
  8. Alqaryouti, O., Siyam, N., Abdel Monem, A., & Shaalan, K. (2024). Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics, 20(1/2), 142–161. https://doi.org/10.1016/j.aci.2019.11.003
  9. Alqaryouti, O., Siyam, N., & Shaalan, K. (2019). A Sentiment Analysis Lexical Resource and Dataset for Government Smart Apps Domain. In A. E. Hassanien, M. F. Tolba, K. Shaalan, & A. T. Azar (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018 (pp. 230–240). Springer International Publishing. https://doi.org/10.1007/978-3-319-99010-1_21
  10. Alslaity, A., & Orji, R. (2024). Machine learning techniques for emotion detection and sentiment analysis: current state, challenges, and future directions. Behaviour & Information Technology, 43(1), 139–164. https://doi.org/10.1080/0144929X.2022.2156387
  11. Amelia, D., & Siregar, I. W. (2023). The Influence of System Quality and Information Quality on Gojek Application User Satisfaction. Social Science Studies, 3(4), 249–262. https://doi.org/10.47153/sss34.7392023
  12. Amri, P., Mutiarin, D., & Nurmandi, A. (2022). Comparison of Online Transportation Policy Problems Between Major Cities in Indonesia. In C. Stephanidis, M. Antona, S. Ntoa, & G. Salvendy (Eds.), HCI International 2022 – Late Breaking Posters 24th International Conference on Human-Computer Interaction, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, Part I (pp. 241–248). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-19679-9_30
  13. Anggriawan, R. (2019). E-Hailing Transportation and the Issue of Competition in Indonesia. Indonesian Comparative Law Review, 2(1), 56–66. https://doi.org/10.18196/iclr.2116
  14. Anjaria, M., & Guddeti, R. M. R. (2014). A novel sentiment analysis of social networks using supervised learning. Social Network Analysis and Mining, 4(1), 181. https://doi.org/10.1007/s13278-014-0181-9
  15. Anjum, M., & Shahab, S. (2023). Emergency Vehicle Driving Assistance System Using Recurrent Neural Network with Navigational Data Processing Method. Sustainability, 15(4), 3069. https://doi.org/10.3390/su15043069
  16. Antomi, B. (2023). PENGARUH PROMOSI DAN KUALITAS PELAYANAN TERHADAP KEPUASAN PELANGGAN GOJEK DI UIN RADEN INTAN LAMPUNG. Business and Enterpreneurship Journal (BEJ), 4(2), 27–32. https://doi.org/10.57084/bej.v4i2.1199
  17. Arellana, J., Oviedo, D., Guzman, L. A., & Alvarez, V. (2021). Urban transport planning and access inequalities: A tale of two Colombian cities. Research in Transportation Business & Management, 40, 100554. https://doi.org/10.1016/j.rtbm.2020.100554
  18. Ariani, M., & Zulhawati. (2023). Implementation of Standard Operating Procedures (SOP), attitudes and assessment of income of two-wheeled Gojek partner drivers in the Jakarta Area. International Journal of Business Ecosystem & Strategy, 5(2), 82–93. https://doi.org/10.36096/ijbes.v5i2.411
  19. Arinni, R. W., & Suyanto, A. M. A. (2023). Positioning Analysis of Online Transportation Companies in Indonesia Based on Marketing Mix Aspects. International Journal of Scientific Research and Management, 11(11), 5505–5515. https://doi.org/10.18535/ijsrm/v11i11.em13
  20. Asghar, M. Z., Khan, A., Ahmad, S., & Kundi, F. M. (2014). A review of feature extraction in sentiment analysis. Journal of Basic and Applied Scientific Research, 4(3), 181–186. https://www.researchgate.net/publication/283318740_A_Review_of_Feature_Extraction_in_Sentiment_Analysis
  21. Ashkrof, P., Correia, G. H. de A., Cats, O., & Arem, B. van. (2024). On the Relocation Behavior of Ride-sourcing Drivers. Transportation Letters, 16(4), 330–337. https://doi.org/10.1080/19427867.2023.2192581
  22. Azad-Khaneghah, P., Neubauer, N., Miguel Cruz, A., & Liu, L. (2021). Mobile health app usability and quality rating scales: a systematic review. Disability and Rehabilitation: Assistive Technology, 16(7), 712–721. https://doi.org/10.1080/17483107.2019.1701103
  23. Bao, S., Nishiura, O., Fujimori, S., Oshiro, K., & Zhang, R. (2020). Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO2 Emissions in Asia. Sustainability, 12(18), 7621. https://doi.org/10.3390/su12187621
  24. Berger, T., Chen, C., & Frey, C. B. (2018). Drivers of disruption? Estimating the Uber effect. European Economic Review, 110, 197–210. https://doi.org/10.1016/j.euroecorev.2018.05.006
  25. Bhandari, U., Neben, T., Chang, K., & Chua, W. Y. (2017). Effects of interface design factors on affective responses and quality evaluations in mobile applications. Computers in Human Behavior, 72, 525–534. https://doi.org/10.1016/j.chb.2017.02.044
  26. Bharti, S. K., Varadhaganapathy, S., Gupta, R. K., Shukla, P. K., Bouye, M., Hingaa, S. K., & Mahmoud, A. (2022). Text-Based Emotion Recognition Using Deep Learning Approach. Computational Intelligence and Neuroscience, 2022(1), 2645381. https://doi.org/https://doi.org/10.1155/2022/2645381
  27. Bhutto, S., Marvi, H., & Kumar, R. (2022). Excessive Sales Promotions Impact on Clothing Brand Equity. Global Economics Review (GER), 7(2), 171− 179. https://www.gerjournal.com/article/excessive-sales-promotions-impact-on-clothing-brand-equity
  28. Bondarenko, V., & Vyshnivska, B. (2023). Promotional Marketing as A Method of Increasing Sales. Three Seas Economic Journal, 4(2), 21–28. http://baltijapublishing.lv/index.php/threeseas/article/view/2123
  29. Brown, A., & LaValle, W. (2021). Hailing a change: comparing taxi and ridehail service quality in Los Angeles. Transportation, 48, 1007–1031. https://doi.org/10.1007/s11116-020-10086-z
  30. Bryan, & Alvin, S. (2023). The Impact of BTS-GOJEK Sales Promotion on Impulsive Buying Behavior among Indonesian ARMY (BTS Fanbase). Open Access Indonesia Journal of Social Sciences, 6(5), 1150–1158. https://journalsocialsciences.com/index.php/oaijss/article/view/185
  31. Buell, R. W., & Kalkanci, B. (2021). How Transparency into Internal and External Responsibility Initiatives Influences Consumer Choice. Management Science, 67(2), 932–950. https://doi.org/10.1287/mnsc.2020.3588
  32. Caesaron, D., Makapedua, J., & Lukodono, R. P. (2021). Evaluation of Online-Based Ride-Hailing Services Using Service Quality (Servqual) Method, Refined Kano Model, Importance Performance Analysis (IPA), and Quality Function Deployment (QFD): A Case Study of Grab Bike Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 12(2), 75–88. https://journal.binus.ac.id/index.php/comtech/article/view/6790
  33. Caragliu, A., & Bo, C. Del. (2020). Do Smart City Policies Work? In B. Daniotti, M. Gianinetto, & S. Della Torre (Eds.), Digital Transformation of the Design, Construction and Management Processes of the Built Environment (pp. 149–159). Springer Open. https://library.oapen.org/bitstream/handle/20.500.12657/23057/1007101.pdf?sequence=1#page=157
  34. Cardone, B., Martino, F. Di, & Miraglia, V. (2023). A Fuzzy-Based Emotion Detection Method to Classify the Relevance of Pleasant/Unpleasant Emotions Posted by Users in Reviews of Service Facilities. Applied Sciences, 13(10), 5893. https://doi.org/10.3390/app13105893
  35. Cats, O., Kucharski, R., Danda, S. R., & Yap, M. (2022). Beyond the dichotomy: How ride-hailing competes with and complements public transport. PLOS ONE, 17(1), e0262496. https://doi.org/10.1371/journal.pone.0262496
  36. Chader, A., Hamdad, L., & Belkhiri, A. (2021). Sentiment Analysis in Google Play Store: Algerian Reviews Case. In S. Chikhi, A. Amine, A. Chaoui, D. E. Saidouni, & M. K. Kholladi (Eds.), Modelling and Implementation of Complex Systems. MISC 2020. Lecture Notes in Networks and Systems, vol 156. Springer (pp. 107–121). Springer International Publishing. https://doi.org/10.1007/978-3-030-58861-8_8
  37. Chalermpong, S., Kato, H., Thaithatkul, P., Ratanawaraha, A., Fillone, A., Hoang-Tung, N., & Jittrapirom, P. (2023). Ride-hailing applications in Southeast Asia: A literature review. International Journal of Sustainable Transportation, 17(3), 298–318. https://doi.org/10.1080/15568318.2022.2032885
  38. Chavhan, S., & Venkataram, P. (2020). Prediction based traffic management in a metropolitan area. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 447–466. https://doi.org/10.1016/j.jtte.2018.05.003
  39. Chen, C.-C., Hsiao, K.-L., & Li, W.-C. (2020). Exploring the determinants of usage continuance willingness for location-based apps: A case study of bicycle-based exercise apps. Journal of Retailing and Consumer Services, 55, 102097. https://doi.org/https://doi.org/10.1016/j.jretconser.2020.102097
  40. Coleman, V., Xiao, Y. (Daniel), Bair, L., & Chollett, B. (1997). Toward a TQM Paradigm: Using SERVQUAL to Measure Library Service Quality. College & Research Libraries, 58(3), 237–249. https://doi.org/10.5860/crl.58.3.237
  41. Contreras, S. D., & Paz, A. (2018). The effects of ride-hailing companies on the taxicab industry in Las Vegas, Nevada. Transportation Research Part A: Policy and Practice, 115, 63–70. https://doi.org/10.1016/j.tra.2017.11.008
  42. Devaraj, A., Ambi Ramakrishnan, G., Nair, G. S., Srinivasan, K. K., Bhat, C. R., Pinjari, A. R., Ramadurai, G., & Pendyala, R. M. (2020). Joint Model of Application-Based Ride Hailing Adoption, Intensity of Use, and Intermediate Public Transport Consideration among Workers in Chennai City. Transportation Research Record, 2674(4), 152–164. https://doi.org/10.1177/0361198120912237
  43. Dhonde, B. N., & Patel, C. R. (2021). Estimating urban freight trips using light commercial vehicles in the Indian textile industry. Transportation Research Interdisciplinary Perspectives, 11, 100411. https://doi.org/https://doi.org/10.1016/j.trip.2021.100411
  44. Dias, F. F., Lavieri, P. S., Garikapati, V. M., Astroza, S., Pendyala, R. M., & Bhat, C. R. (2017). A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation, 44(6), 1307–1323. https://doi.org/10.1007/s11116-017-9797-8
  45. Dzisi, E. K., Ackaah, W., Aprimah, B. A., & Adjei, E. (2020). Understanding demographics of ride-sourcing and the factors that underlie its use among young people. Scientific African, 7, e00288. https://doi.org/10.1016/j.sciaf.2020.e00288
  46. Eliza, N., Putri, Y., & Priyanto, F. (2023). Analysis of Service Levels on Gojek Customer Satisfaction in the Period After the Covid-19 Pandemic. Journal of Social Science and Business Studies, 1(4), 111–116. https://doi.org/10.61487/jssbs.v1i4.42
  47. Eposi, E. M. (2023). Evaluation of Customers’ Expectations and Perceptions of Service Quality Dimensions: A Study of South African Post Office in the North-West Province. International Review of Management and Marketing, 13(6), 29–42. https://doi.org/10.32479/irmm.14876
  48. Ernawati, D., & Lutfi, H. (2022). Gojek’s Strategy to Win the Online Transportation Competition. Jurnal Manajemen Bisnis, 13(1), 76–92. https://doi.org/10.18196/mb.v13i1.11381
  49. Etemad-Sajadi, R., & Bohrer, L. (2019). The impact of service recovery output/process on customer satisfaction and loyalty: The case of the airline industry. Tourism and Hospitality Research, 19(2), 259–266. https://doi.org/10.1177/1467358417743080
  50. Etuk, S., James, E. E., & Joseph, U. E. (2022). MARKETING STRATEGIES AND PASSENGERS’ADOPTION OF RIDE-HAILING SERVICES. International Journal of Management & Entrepreneurship Research, 4(1), 59–73. https://fepbl.com/index.php/ijmer/article/view/288
  51. Fauzi, A. A., & Sheng, M. L. (2021). Ride-hailing apps’ continuance intention among different consumer groups in Indonesia: the role of personal innovativeness and perceived utilitarian and hedonic value. Asia Pacific Journal of Marketing and Logistics, 33(5), 1195–1219. https://doi.org/10.1108/APJML-05-2019-0332
  52. Furqon, D. A. (2023). The Journey of GOJEK: Becoming Indonesia’s First Decacorn Startup. Jurnal TAMBORA, 7(2), 18–23. https://doi.org/10.36761/jt.v7i2.2955
  53. Ganeshbhai, S. Y., & Shah, B. K. (2015). Feature based opinion mining: A survey. 2015 IEEE International Advance Computing Conference (IACC), 919–923. https://ieeexplore.ieee.org/abstract/document/7154839
  54. Gangarde, R., Shrivastava, D., Sharma, A., Tandon, T., Pawar, A., & Garg, R. (2022). Data anonymization to balance privacy and utility of online social media network data. Journal of Discrete Mathematical Sciences and Cryptography, 25(3), 829–838. https://doi.org/10.1080/09720529.2021.2016225
  55. Gerring, J. (2017). Qualitative Methods. Annual Review of Political Science, 20(1), 15–36. https://doi.org/10.1146/annurev-polisci-092415-024158
  56. Ghanghav, R. D., Nikam, A. A., Gosavi, S. V, Bhanuse, V. S., Chobe, P. S., & Pardeshi, D. B. (2023). A Microsoft-Platform based App for Vehicle Problem Solutions and Navigation: Phonomech. 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), 1702–1706. https://doi.org/10.1109/ICESC57686.2023.10193066
  57. Google Trends. (2024). Gojek. Google Trends. https://trends.google.com/trends/explore?date=2022-01-01 2024-03-01&geo=ID&q=Gojek&hl=id
  58. Gunari, H., Megawati, M., & Theo, D. (2022). Determinants of Satisfaction of Inpatients at Datu Beru Takengon Regional General Hospital. Journal La Medihealtico, 3(3), 201–213. https://doi.org/10.37899/journallamedihealtico.v3i3.663
  59. Guo, Y., Li, X., & Zeng, X. (2019). Platform Competition in the Sharing Economy: Understanding How Ride-Hailing Services Influence New Car Purchases. Journal of Management Information Systems, 36(4), 1043–1070. https://doi.org/10.1080/07421222.2019.1661087
  60. Guo, Y., Xin, F., Barnes, S. J., & Li, X. (2018). Opportunities or threats: The rise of Online Collaborative Consumption (OCC) and its impact on new car sales. Electronic Commerce Research and Applications, 29, 133–141. https://doi.org/https://doi.org/10.1016/j.elerap.2018.04.005
  61. Guo, Y., Zhang, Y., Yu, J., & Shen, X. (2020). A Spatiotemporal Thermo Guidance Based Real-Time Online Ride-Hailing Dispatch Framework. IEEE Access, 8, 115063–115077. https://doi.org/10.1109/ACCESS.2020.3003942
  62. Hall, J. D., Palsson, C., & Price, J. (2018). Is Uber a substitute or complement for public transit? Journal of Urban Economics, 108, 36–50. https://doi.org/10.1016/j.jue.2018.09.003
  63. He, Z., & Haasis, H.-D. (2020). A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities. Sustainability, 12(5), 1975. https://doi.org/10.3390/su12051975
  64. Henao, A., & Marshall, W. E. (2019). The impact of ride-hailing on vehicle miles traveled. Transportation, 46(6), 2173–2194. https://doi.org/10.1007/s11116-018-9923-2
  65. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. KDD ’04: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168–177. https://doi.org/10.1145/1014052.1014073
  66. Ianenko, M., Stepanov, M., & Mironova, L. (2020). Brand identity development. E3S Web of Conferences, 164, 09015. https://doi.org/10.1051/e3sconf/202016409015
  67. Iffan, M. (2020). Marketing Approach on Competitive Advantage of Online-Based Public Transportation. International Conference on Business, Economic, Social Science, and Humanities – Economics, Business and Management Track (ICOBEST-EBM 2019), 112, 85–88. https://doi.org/10.2991/aebmr.k.200108.021
  68. Jang, S., Farajallah, M., & So, K. K. F. (2020). The Effect of Quality Cues on Travelers’ Demand for Peer-to-Peer Ridesharing: A Neglected Area of the Sharing Economy. Journal of Travel Research, 60(2), 446–461. https://doi.org/10.1177/0047287519897998
  69. Kang, L., Jiang, Q., Peng, C.-H., Sia, C. L., & Liang, T.-P. (2020). Managing Change with the Support of Smart Technology: A Field Investigation of Ride-Hailing Services. Journal of the Association for Information Systems, 21(6), 1594–1620. https://doi.org/10.17705/1jais.00647
  70. Kapoor, A. P., & Vij, M. (2020). How to Boost your App Store Rating? An Empirical Assessment of Ratings for Mobile Banking Apps. Journal of Theoretical and Applied Electronic Commerce Research, 15(1), 99–115. https://doi.org/10.4067/S0718-18762020000100108
  71. Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. Coling 2004: Proceedings of the 20th International Conference on Computational Linguistics, 1367–1373. https://aclanthology.org/C04-1200.pdf
  72. Kong, H., Zhang, X., & Zhao, J. (2020). How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China. Journal of Transport Geography, 86, 102769. https://doi.org/10.1016/j.jtrangeo.2020.102769
  73. Kusumo, O. A., Indrayanti, K. W., Mulyono, G. P., & Laila, K. (2023). Perlindungan Hukum Driver Gofood terhadap Pembatalan Pesanan Oleh Konsumen dengan Metode Cash On Delivery. Bhirawa Law Journal, 4(1), 78–86. https://doi.org/10.26905/blj.v4i1.10339
  74. Lavuri, R., Jindal, A., & Akram, U. (2022). How perceived utilitarian and hedonic value influence online impulse shopping in India? Moderating role of perceived trust and perceived risk. International Journal of Quality and Service Sciences, 14(4), 615–634. https://doi.org/10.1108/IJQSS-11-2021-0169
  75. Lee, Y., Kim, K. H., & Kim, J.-N. (2019). Understanding the impacts of issue types and employee–organization relationships on employees’ problem perceptions and communicative behaviors. Corporate Communications: An International Journal, 24(3), 553–568. https://doi.org/10.1108/CCIJ-12-2018-0127
  76. Liang, Z., Kong, W., Zhan, X., & Xiao, Y. (2022). Analysis of the Impact of Ride-Hailing on Urban Road Network Traffic by Using Vehicle Trajectory Data. Journal of Advanced Transportation, 2022, 6940850. https://doi.org/10.1155/2022/6940850
  77. Liao, Y. (2021). Ride-sourcing compared to its public-transit alternative using big trip data. Journal of Transport Geography, 95, 103135. https://doi.org/10.1016/j.jtrangeo.2021.103135
  78. Lin, H., Liu, C., Li, Z., Qian, F., Li, M., & Xiong, P. (2024). Aging or Glitching? What Leads to Poor Android Responsiveness and What Can We Do About It? IEEE Transactions on Mobile Computing, 23(2), 1521–1533. https://doi.org/10.1109/TMC.2023.3237716
  79. Lin, X.-M., Ho, C.-H., Xia, L.-T., & Zhao, R.-Y. (2021). Sentiment analysis of low-carbon travel APP user comments based on deep learning. Sustainable Energy Technologies and Assessments, 44, 101014. https://doi.org/10.1016/j.seta.2021.101014
  80. Liu, B. (2022). Sentiment analysis and opinion mining (G. Hirst (ed.)). Springer Nature Switzerland AG. https://doi.org/http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
  81. Liu, X., Yang, H., & Xiao, F. (2022). Equilibrium in taxi and ride-sourcing service considering the use of e-hailing application. Transportmetrica A: Transport Science, 18(3), 659–675. https://doi.org/10.1080/23249935.2021.1890273
  82. Mariani, M. M., Borghi, M., & Laker, B. (2023). Do submission devices influence online review ratings differently across different types of platforms? A big data analysis. Technological Forecasting and Social Change, 189, 122296. https://doi.org/10.1016/j.techfore.2022.122296
  83. Martin, S., Klimoski, R., & Henderson, A. (2022). Improving internal service: identifying the roles of employee proficiency, adaptivity and proactivity. Journal of Organizational Effectiveness: People and Performance, 9(1), 50–67. https://doi.org/10.1108/JOEPP-09-2020-0178
  84. Marwiyah, Arti, P. P., & Hidayat, T. (2022). An Analysis of Online Transportation Applications Between Gojek and Grab for Students. International Journal of Science Education and Cultural Studies, 1(1), 52–64. https://ejournal.sultanpublisher.com/index.php/ijsecs/article/download/28/6
  85. Matowicki, M., Pecherkova, P., & Pribyl, O. (2023). The potential of changing habitual car user travel modes: The case of Czech towns. International Journal of Transportation Science and Technology, 12(4), 986–995. https://doi.org/10.1016/j.ijtst.2022.11.001
  86. Mavlutova, I., Atstaja, D., Grasis, J., Kuzmina, J., Uvarova, I., & Roga, D. (2023). Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review. Energies, 16(8), 3585. https://doi.org/10.3390/en16083585
  87. Meredith-Karam, P., Kong, H., Wang, S., & Zhao, J. (2021). The relationship between ridehailing and public transit in Chicago: A comparison before and after COVID-19. Journal of Transport Geography, 97, 103219. https://doi.org/10.1016/j.jtrangeo.2021.103219
  88. Miller, D., Rabho, L. A., Awondo, P., Vries, M. de, Duque, M., Garvey, P., Haapio-Kirk, L., Hawkins, C., Otaegui, A., Walton, S., & Wang, X. (2021). The global smartphone: Beyond a youth technology. UCL Press. https://doi.org/10.2307/j.ctv1b0fvh1
  89. Mitropoulos, L., Kortsari, A., & Ayfantopoulou, G. (2021). A systematic literature review of ride-sharing platforms, user factors and barriers. European Transport Research Review, 13(1), 61. https://doi.org/10.1186/s12544-021-00522-1
  90. Molina, L. T., Zhu, T., Wan, W., & Gurjar, B. R. (2020). Impacts of Megacities on Air Quality: Challenges and Opportunities. In Oxford Research Encyclopedia of Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.5
  91. Mon, A. M. (2023). Student Expectation and Perception on Service Quality: Gap Analysis Model. International Journal of Academe and Industry Research, 4(1), 1–23. https://ijair.iiari.org/media/publications/560368-student-expectation-and-perception-on-se-481b9dbd.pdf
  92. Monicha, M., & Mursyidah, L. (2021). Physical Evidence (Tangibles) in Class III Inpatient Services at Sidoarjo Regency Hospital. Indonesian Journal of Public Policy Review, 16, 1–4. https://doi.org/10.21070/ijppr.v16i0.1141
  93. Morshed, S. A., Khan, S. S., Tanvir, R. B., & Nur, S. (2021). Impact of COVID-19 pandemic on ride-hailing services based on large-scale Twitter data analysis. Journal of Urban Management, 10(2), 155–165. https://doi.org/10.1016/j.jum.2021.03.002
  94. Mouratidis, A. (2021). Smooth integration of transport infrastructure into urban space. Journal of Infrastructure, Policy and Development, 5(2), 1–10. https://doi.org/10.24294/jipd.v5i2.1379
  95. Nastiti, H., A, J. G., & Pangestuti, D. C. (2023). Analysis of the customer’s loyalty of the online transportation service Gojek. International Journal of Research in Business and Social Science (2147-4478), 12(5), 17–29. https://doi.org/10.20525/ijrbs.v12i5.2570
  96. Nasution, W., & Sumanti, S. T. (2023). Application Marketing Strategy Using Social Media in the Technology Industry: A Case Study of Gojek, Medan City. Journal of Education, Humaniora and Social Sciences (JEHSS), 6(1), 16–26. https://doi.org/10.34007/jehss.v6i1.1797
  97. Naumov, S., Keith, D. R., & Sterman, J. D. (2023). Accelerating vehicle fleet turnover to achieve sustainable mobility goals. Journal of Operations Management, 69(1), 36–66. https://doi.org/10.1002/joom.1173
  98. Neethu, M. S., & Rajasree, R. (2013). Sentiment analysis in twitter using machine learning techniques. 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 1–5. https://doi.org/10.1109/ICCCNT.2013.6726818
  99. Nguyen-Phuoc, D. Q., Su, D. N., Tran, P. T. K., Le, D.-T. T., & Johnson, L. W. (2020). Factors influencing customer’s loyalty towards ride-hailing taxi services – A case study of Vietnam. Transportation Research Part A: Policy and Practice, 134, 96–112. https://www.sciencedirect.com/science/article/pii/S0965856419303131
  100. Nugroho, M. R. H., & Suryadi, A. (2023). Analisis Beban Kerja dengan Pendekatan Cardiovascular (CVL) dan Subjective Workload Assesment Technique (SWAT) : Studi Kasus Pengemudi Go-Jek. Rekayasa, 16(2), 132–141. https://doi.org/10.21107/rekayasa.v16i2.15897
  101. Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., & Liang, F. (2023). Smart Transportation: An Overview of Technologies and Applications. Sensors, 23(8), 3880. https://doi.org/10.3390/s23083880
  102. Pan, R., Yang, H., Xie, K., & Wen, Y. (2020). Exploring the Equity of Traditional and Ride-Hailing Taxi Services during Peak Hours. Transportation Research Record, 2674(9), 266–278. https://doi.org/10.1177/0361198120928338
  103. Pang, B., & Lee, L. (2004). A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. ACL ’04: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, 271-es. https://doi.org/10.48550/arXiv.cs/0409058
  104. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. EMNLP ’02: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, 79–86. https://doi.org/10.3115/1118693.1118704
  105. Patravali, S. D., & Algur, S. P. (2022). Sentimental Analysis of COVID-19 Tweets Using Semantic Approach. 2022 3rd International Conference for Emerging Technology (INCET), 1–4. https://doi.org/10.1109/INCET54531.2022.9825298
  106. Pena, M. M., Silva, E. M. S. da, Tronchin, D. M. R., & Melleiro, M. M. (2013). The use of the quality model of Parasuraman, Zeithaml and Berry in health services. Revista Da Escola de Enfermagem Da USP, 47(5), 1227–1232. https://doi.org/10.1590/S0080-623420130000500030
  107. Poniman, P., & Utomo, Y. (2020). ATTRIBUTES OF IMPROVING SERVICE QUALITY ON CONSUMER SATISFACTION WITH SERVQUAL APPROACH. Tibuana, 3(2), 42–47. https://doi.org/10.36456/tibuana.3.02.2569.42-47
  108. Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems, 69, 45–63. https://doi.org/10.1016/j.knosys.2014.05.005
  109. Rahman, M. M., Rahman, S. S. M. M., Allayear, S. M., Patwary, M. F. K., & Munna, M. T. A. (2020). A Sentiment Analysis Based Approach for Understanding the User Satisfaction on Android Application. In K. S. Raju, R. Senkerik, S. P. Lanka, & V. Rajagopal (Eds.), Data Engineering and Communication Technology Proceedings of 3rd ICDECT-2K19 (pp. 397–407). Springer. https://doi.org/10.1007/978-981-15-1097-7_33
  110. Ramadina, A., & Tania, K. D. (2024). Knowledge Extraction of Gojek Application Review Using Aspect-based Sentiment Analysis. The Indonesian Journal of Computer Science, 13(3), 3962–3976. https://doi.org/10.33022/ijcs.v13i3.4020
  111. Rayle, L., Dai, D., Chan, N., Cervero, R., & Shaheen, S. (2016). Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy, 45, 168–178. https://doi.org/10.1016/j.tranpol.2015.10.004
  112. Rohini, V., Thomas, M., & Latha, C. A. (2016). Domain based sentiment analysis in regional Language-Kannada using machine learning algorithm. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 503–507. https://doi.org/10.1109/RTEICT.2016.7807872
  113. Saad, F. (2014). Baseline evaluation: an empirical study of the performance of machine learning algorithms in short snippet sentiment analysis. Proceedings of the 14th International Conference on Knowledge Technologies and Data-Driven Business (i-KNOW ’14), 1–8. https://doi.org/10.1145/2637748.2638420
  114. Sabogal-Cardona, O., Oviedo, D., Scholl, L., Crotte, A., & Bedoya-Maya, F. (2021). Not my usual trip: Ride-hailing characterization in Mexico City. Travel Behaviour and Society, 25, 233–245. https://doi.org/10.1016/j.tbs.2021.07.010
  115. Saleh, F., & Ryan, C. (1991). Analysing Service Quality in the Hospitality Industry Using the SERVQUAL Model. The Service Industries Journal, 11(3), 324–345. https://doi.org/10.1080/02642069100000049
  116. Salehinejad, S., Niakan Kalhori, S. R., Hajesmaeel Gohari, S., Bahaadinbeigy, K., & Fatehi, F. (2021). A review and content analysis of national apps for COVID-19 management using Mobile Application Rating Scale (MARS). Informatics for Health and Social Care, 46(1), 42–55. https://doi.org/10.1080/17538157.2020.1837838
  117. Salsabila, D. A. M., Immanuela, F., Sianturi, K. H., & Pamungkas, Y. F. (2023). THE EFFECT OF CORPORATE IMAGE AND PRICE FAIRNESS ON GOJEK USER LOYALTY AND SATISFACTION. Indonesian Marketing Journal, 2(2), 87–99. https://doi.org/10.19166/imj.v2i2.6761
  118. Scholl, L., Bedoya, F., Sabogal-Cardona, O., & Oviedo, D. (2022). Making the links between ride-hailing and public transit ridership: Impacts in medium and large Colombian cities. Research in Transportation Business & Management, 45, 100901. https://doi.org/10.1016/j.rtbm.2022.100901
  119. Seaman, C. B. (2008). Qualitative Methods. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to Advanced Empirical Software Engineering (pp. 35–62). Springer, London. https://doi.org/10.1007/978-1-84800-044-5_2
  120. Sembiring, V. A., & Puspitasari, N. B. (2023). EVALUASI LAYANAN GOJEK MILIK PT. GOTO GOJEK TOKOKPEDIA TBK. DENGAN METODE SERVICE QUALITY (SERVQUAL). Industrial Engineering Online Journal, 12(3), 1–12. https://ejournal3.undip.ac.id/index.php/ieoj/article/view/40322
  121. Shabrina, W., & Sudarmilah, E. (2022). MARKETING COMMUNICATION STRATEGY ANALYSIS IN GOJEK WHILE PPKM (PEMBERLAKUAN PEMBATASAN KEGIATAN MASYARAKAT) DURING COVID-19 PANDEMIC IN INDONESIA. Proceedings of International Conference on Communication Science (ICCS), 2(1), 477–484. https://doi.org/10.29303/iccsproceeding.v2i1.122
  122. Shaheen, S., Cohen, A., Chan, N., & Bansal, A. (2020). Chapter 13 - Sharing strategies: carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes. In E. Deakin (Ed.), Transportation, Land Use, and Environmental Planning (pp. 237–262). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815167-9.00013-X
  123. Shrestha, P. M. (2021). Impact of Service Quality on Customer Satisfaction and Loyalty. Management Dynamics, 24(2), 71–80. https://doi.org/10.3126/md.v24i2.50041
  124. Sinurat, A., Saragih, L., Napitu, R., Sipayung, T., Damanik, E. O. P., & Tioner. (2023). Go-Jek business customers service quality significant efectifly to customer satisfaction in pematangsiantar region (case study of Simalungun University students). KnE Social Sciences, 8(4), 687–695. https://doi.org/10.18502/kss.v8i4.12962
  125. Sriwongphanawes, K., & Fukuda, D. (2024). How do fares affect the utilization of ride-hailing services: Evidence from Uber Japan’s experiments. Asian Transport Studies, 10, 100121. https://doi.org/10.1016/j.eastsj.2023.100121
  126. Su, H.-C., & Linderman, K. (2016). An Empirical Investigation in Sustaining High-Quality Performance. Decision Sciences, 47(5), 787–819. https://doi.org/10.1111/deci.12210
  127. Sui, Y., Zhang, H., Song, X., Shao, F., Yu, X., Shibasaki, R., Sun, R., Yuan, M., Wang, C., Li, S., & Li, Y. (2019). GPS data in urban online ride-hailing: A comparative analysis on fuel consumption and emissions. Journal of Cleaner Production, 227, 495–505. https://doi.org/10.1016/j.jclepro.2019.04.159
  128. Sun, R., Tse, Y. K., & Liu, X. (2023). An empirical investigation of electronic word-of-mouth: product recall and crisis response strategy in social media. Enterprise Information Systems, 17(12), 2204331. https://doi.org/10.1080/17517575.2023.2204331
  129. Supriyanto, A., Wiyono, B. B., & Burhanuddin, B. (2021). Effects of service quality and customer satisfaction on loyalty of bank customers. Cogent Business & Management, 8(1), 1937847. https://doi.org/10.1080/23311975.2021.1937847
  130. Surastia, D. R., Yunus, M., Sulistyorini, A., & Marji, M. (2023). Hubungan Pengetahuan, Sikap dan Kelelahan Kerja dengan Perilaku Safety Riding pada Pengendara Go-Jek di Kota Malang. Jurnal Rumpun Ilmu Kesehatan, 3(3), 201–219. https://ejurnal.politeknikpratama.ac.id/index.php/JRIK/article/view/2663
  131. Tan, T. M., Balaji, M. S., Oikarinen, E.-L., Alatalo, S., & Salo, J. (2021). Recover from a service failure: The differential effects of brand betrayal and brand disappointment on an exclusive brand offering. Journal of Business Research, 123, 126–139. https://doi.org/10.1016/j.jbusres.2020.09.056
  132. Tang, H., Tan, S., & Cheng, X. (2009). A survey on sentiment detection of reviews. Expert Systems with Applications, 36(7), 10760–10773. https://doi.org/10.1016/j.eswa.2009.02.063
  133. Taylor, S. (1995). The effects of filled waiting time and service provider control over the delay on evaluations of service. Journal of the Academy of Marketing Science, 23, 38–48. https://doi.org/10.1007/BF02894610
  134. Tiarani, D., Octaviani, V., & Indria, I. (2023). Service Responsiveness Of PT. Pelabuhan Indonesia II (PERSERO) Bengkulu Branch In Responding Container Service User Complaints. Jurnal ISO: Jurnal Ilmu Sosial, Politik Dan Humaniora, 3(1), 69–76. https://doi.org/10.53697/iso.v3i1.1151
  135. Tjandra, S., & Suhartono, A. (2023). Analysis of Service Quality at Beauty Salon in Surabaya Using the ServQual Method. International Journal of Science, Technology & Management, 4(1), 245–253. https://doi.org/10.46729/ijstm.v4i1.702
  136. Toso, T., Kibangou, A. Y., & Frasca, P. (2023). Impact on Traffic of Delayed Information in Navigation Systems. IEEE Control Systems Letters, 7, 1500–1505. https://doi.org/10.1109/LCSYS.2023.3273170
  137. Tseng, T. H., Lee, C. T., Huang, H.-T., & Yang, W. H. (2022). Success factors driving consumer reuse intention of mobile shopping application channel. International Journal of Retail & Distribution Management, 50(1), 76–99. https://doi.org/10.1108/IJRDM-08-2020-0309
  138. Turney, P. D. (2002). Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL ’02), 417–424. https://doi.org/10.3115/1073083.1073153
  139. Vemberain, J., & Rakhman, A. (2024). Influence of promotions, price perceptions, service quality towards customer loyalty through customer satisfaction Gojek in Jakarta. Jurnal Ekonomi Perusahaan, 31(1), 21–40. https://doi.org/10.46806/jep.v31i1.1108
  140. Wahyudi, A., Tirtana, A., & Langoy, L. D. (2023). Analysis of Gojek’s Brand Perception Utilizing Twitter Hashtag: Sentiment Analysis Using Ekman’s Classification. Open Access Indonesia Journal of Social Sciences, 6(2), 917–925. https://doi.org/10.37275/oaijss.v6i2.153
  141. WANG, D., MIWA, T., & MORIKAWA, T. (2022). Interrelationships between traditional taxi services and online ride-hailing: empirical evidence from Xiamen, China. Sustainable Cities and Society, 83, 103924. https://doi.org/10.1016/j.scs.2022.103924
  142. Wang, Z., Zhang, Y., Jia, B., & Gao, Z. (2024). Comparative Analysis of Usage Patterns and Underlying Determinants for Ride-hailing and Traditional Taxi Services: A Chicago Case Study. Transportation Research Part A: Policy and Practice, 179, 103912. https://doi.org/10.1016/j.tra.2023.103912
  143. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
  144. Wau, H., & Purba, D. I. G. (2019). Patient Satisfaction Reviewed from Dimension Reliability in Community Health Center. JMMR (Jurnal Medicoeticolegal Dan Manajemen Rumah Sakit), 8(3), 151–157. https://doi.org/10.18196/jmmr.83101
  145. Weichselbraun, A., Gindl, S., & Scharl, A. (2010). A Context-Dependent Supervised Learning Approach to Sentiment Detection in Large Textual Databases. Journal of Information and Data Management, 1(3), 329–342. https://periodicos.ufmg.br/index.php/jidm/article/view/54
  146. Wijono, F. D., & Efrata, T. C. (2023). Strengthening Customer Loyalty through Customer Engagement, Customer Experience, and Service Innovation. Jurnal Entrepreneur Dan Entrepreneurship, 12(2), 155–168. https://doi.org/10.37715/jee.v12i2.4177
  147. Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, 347–354. https://aclanthology.org/H05-1044/
  148. Wiratama, G. P., & Rusli, A. (2019). Sentiment Analysis of Application User Feedback in Bahasa Indonesia Using Multinomial Naive Bayes. 2019 5th International Conference on New Media Studies (CONMEDIA), 223–227. https://doi.org/10.1109/CONMEDIA46929.2019.8981850
  149. Wright, S., Nelson, J. D., & Cottrill, C. D. (2020). MaaS for the suburban market: Incorporating carpooling in the mix. Transportation Research Part A: Policy and Practice, 131, 206–218. https://doi.org/10.1016/j.tra.2019.09.034
  150. Wu, R., Shao, C., Zhuge, C., Wang, X., & Yin, X. (2023). An Approach for Discovering Urban Transport Service Problem Based on Hotline. Journal of Advanced Transportation, 2023(1), 5667360. https://doi.org/10.1155/2023/5667360
  151. Yiran, Y., & Srivastava, S. (2019). Aspect-based Sentiment Analysis on mobile phone reviews with LDA. Proceedings of the 2019 4th International Conference on Machine Learning Technologies (ICMLT ’19), 101–105. https://doi.org/10.1145/3340997.3341012
  152. Young, M., & Farber, S. (2019). The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey. Transportation Research Part A: Policy and Practice, 119, 383–392. https://doi.org/10.1016/j.tra.2018.11.018
  153. Zhao, Z., Yao, W., Wu, S., Yang, X., Wu, Q., & Fang, Z. (2023). Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data. Journal of Transport Geography, 107, 103544. https://doi.org/10.1016/j.jtrangeo.2023.103544
  154. Zheng, Z., Zhang, J., Zhang, L., Li, M., Rong, P., & Qin, Y. (2022). Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale empirical study from China. Cities, 126, 103706. https://doi.org/10.1016/j.cities.2022.103706
  155. Zhong, J., Lin, Y., & Yang, S. (2020). The Impact of Ride-Hailing Services on Private Car Use in Urban Areas: An Examination in Chinese Cities. Journal of Advanced Transportation, 2020, 8831674. https://doi.org/10.1155/2020/8831674
  156. Zhong, Y., Yang, T., Cao, B., & Cheng, T. C. E. (2022). On-demand ride-hailing platforms in competition with the taxi industry: Pricing strategies and government supervision. International Journal of Production Economics, 243, 108301. https://doi.org/10.1016/j.ijpe.2021.108301
  157. Zulfikar, Z. (2022). Bibliometric analysis of stock market performance throughout the COVID-19 outbreak. Investment Management and Financial Innovations, 19(2), 14–23. https://doi.org/10.21511/imfi.19(2).2022.02