Main Article Content
Abstract
This study develops environmentally friendly brake pads from rice husk with phenolic resin as a binder material. This study aims to analyze the influence of compression pressure on the properties of mechanical, physical and tribological performance. In this study, brake friction material was made using the compression molding method with a composition of 40% phenolic resin, 20% rice husk, 15% , 15% dan 10% hexamine. The compression pressures are varied, i.e. 5 MPa, 10 MPa and 15 MPa. Testing includes density, impact strength, tensile strength, flexural strength, wear and friction. The results showed that increasing the material compaction compression pressure from 5 MPa to 10 MPa can reduce the density, impact strength, tensile strength, flexural strength, and specific wear rate. Meanwhile, increasing the compaction compression pressure from 10 MPa to 15 MPa can improve properties of mechanical, physical and wear resistance. The final material result due to increased compaction compression pressure is influenced by particle size, matrix and filler distribution, porosity along resin cross-linking.
Keywords
Article Details
Copyright (c) 2026 Akhmad Fauzi, Muhammad Errizky Wibowo, Mohammad Rizky Djati Admoko, Muhammad Khafidh, Deni Fajar Fitriyana, Januar Parlaungan Siregar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
PLAGIARISM CHECK
All manuscripts submitted to AJIE will be checked free of plagiarism elements. Manuscripts that do not meet the requirements will be returned to the author for further correction or will be rejected immediately.
The plagiarism check used by AJIE is Turnitin.
References
- Afiefudin, M., Widodo, R., & Rusiyanto, R. (2023). Fabrication and Characterization of Asbestos Free Brake Pads Composite using Elaeocarpus Ganitrus as Reinforcement. Automotive Experiences, 6, 359–371. https://doi.org/10.31603/ae.9367
- Christou, A., Giechaskiel, B., Olofsson, U., & Grigoratos, T. (2025). Review of Health Effects of Automotive Brake and Tyre Wear Particles. Toxics, 13(4), 301.
- Darmawan, A., Purboputro, P., & Febriantoko, B. (2020). The aluminum powder size’ effect on rice plant fiber reinforced composite to hardness, wear and coefficient of friction of brake lining. IOP Conference Series: Materials Science and Engineering, 722, 012002. https://doi.org/10.1088/1757-899X/722/1/012002
- Elhafid, M. M., Susilo, D. D., & Widodo, P. J. (2017). Pengaruh bahan kampas rem terhadap respon getaran pada sistem rem cakram. Jurnal Teknik Mesin Indonesia, 12(1), 1–7.
- Ferdiansyah, F., Premesti, A. S. A., Fathichin, A. R., Ariani, B. M. G., Fahmi, A. H., & Mirzayanti, Y. W. (2023). Review Studi: Analisa Pemanfaatan Limbah Sekam Padi sebagai Bahan Material Maju. 3.
- Ghazali, C. M. R., Kamarudin, H., Shamsul, J., Abdullah, M. M. A. B., & Rafiza, A. (2012). Mechanical properties and wear behavior of brake pads produced from palm slag. Advanced Materials Research, 341, 26–30.
- He, X., Pan, Z., & Li, H. (2025). A Study on the Compaction Behavior and Parameter Sensitivity of Curing Phenolic Thermal Protection Material Strips. Polymers, 17, 1045. https://doi.org/10.3390/polym17081045
- Imran, A., Siregar, J., Rejab, M., Cionita, T., Hadi, A., Jaafar, J., Fitriyana, D., & Dewi, R. (2024). Opportunities and challenges in the sustainable integration of natural fibers and particles in friction materials for eco-friendly brake pads. Mechanical Engineering for Society and Industry, 4, 337–367. https://doi.org/10.31603/mesi.12271
- Singh, J., & Singh, H. (2015). A Review on Utilization of Rice Husk Ash in Concrete. International Journal of Innovations in Engineering Research and Technology, 2(11), 1–7.
- Khafidh, M., Putera, F. P., Yotenka, R., Fitriyana, D. F., Widodo, R. D., Ismail, R., Irawan, A. P., Cionita, T., Siregar, J. P., & Ismail, N. H. (2023). A study on characteristics of brake pad composite materials by varying the composition of epoxy, rice husk, Al2O3, and Fe2O3. Automotive Experiences, 6(2), 303–319. https://doi.org/10.31603/ae.9121
- Li, T., Song, Z., Yang, X., & Du, J. (2022). Influence of processing parameters on the mechanical properties of peek plates by hot compression molding. Materials, 16(1), 36.
- Lv, W., Wang, T., Wang, Q., Yap, K. K., Song, F., & Wang, C. (2024). Tribological and Mechanochemical properties of nanoparticle-filled polytetrafluoroethylene composites under different loads. Polymers, 16(7), 894.
- Melvin, G., Chai, K. F., & Tamiri, F. M. (2019). Characterization of carbonized waste materials: Rice husk and saw dust. 606(1), 012002.
- Mohammed, K., Zulkifli, R., Tahir, M. F. M., & Gaaz, T. S. (2024). A study of mechanical properties and performance of bamboo fiber/polymer composites. Results in Engineering, 23, 102396.
- Oladokun, T., Stephen, J. T., Adebayo, A., & Adeyemi, D. (2019). Effect of Moulding Pressure on Brake Lining Produced from Industrial Waste Material: Sawdust. European Journal of Engineering Research and Science, 4, 62–68. https://doi.org/10.24018/ejers.2019.4.6.1368
- Sallal, H. A., Abdul-Hamead, A. A., & Othman, F. M. (2020). Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite. Defence Technology, 16(2), 425–431.
- Sellami, A., & Elleuch, R. (2023). Green composite friction materials: A review of a new generation of eco-friendly brake materials for sustainability. Environmental Engineering Research, 29. https://doi.org/10.4491/eer.2023.226
- Sunardi, S., Hamdi, S., Saefuloh, I., Sudrajad, A., Ula, S., & Fawaid, M. (2024). Perilaku Laju Keausan dan Kekerasan Komposit Epoksi yang Diperkuat dengan Serat Gelas dan Partikel Bambu. Jurnal Teknik Mesin, 21(2), 64–72.
- Surid, S., Patwary, M. A., & Gafur, M. (2020). A Review on Fabrication and Physico-Mechanical Characterizations of Fiber Reinforced Biocomposites. International Journal of Scientific & Technology Research, 9, 399–412.
- Tong, H., Qian, L., Leng, F.-G., & Qiao, T.-L. (2021). Research progress of rice husk ash in solidified soil. 293, 02018. https://doi.org/10.1051/e3sconf/202129302018
References
Afiefudin, M., Widodo, R., & Rusiyanto, R. (2023). Fabrication and Characterization of Asbestos Free Brake Pads Composite using Elaeocarpus Ganitrus as Reinforcement. Automotive Experiences, 6, 359–371. https://doi.org/10.31603/ae.9367
Christou, A., Giechaskiel, B., Olofsson, U., & Grigoratos, T. (2025). Review of Health Effects of Automotive Brake and Tyre Wear Particles. Toxics, 13(4), 301.
Darmawan, A., Purboputro, P., & Febriantoko, B. (2020). The aluminum powder size’ effect on rice plant fiber reinforced composite to hardness, wear and coefficient of friction of brake lining. IOP Conference Series: Materials Science and Engineering, 722, 012002. https://doi.org/10.1088/1757-899X/722/1/012002
Elhafid, M. M., Susilo, D. D., & Widodo, P. J. (2017). Pengaruh bahan kampas rem terhadap respon getaran pada sistem rem cakram. Jurnal Teknik Mesin Indonesia, 12(1), 1–7.
Ferdiansyah, F., Premesti, A. S. A., Fathichin, A. R., Ariani, B. M. G., Fahmi, A. H., & Mirzayanti, Y. W. (2023). Review Studi: Analisa Pemanfaatan Limbah Sekam Padi sebagai Bahan Material Maju. 3.
Ghazali, C. M. R., Kamarudin, H., Shamsul, J., Abdullah, M. M. A. B., & Rafiza, A. (2012). Mechanical properties and wear behavior of brake pads produced from palm slag. Advanced Materials Research, 341, 26–30.
He, X., Pan, Z., & Li, H. (2025). A Study on the Compaction Behavior and Parameter Sensitivity of Curing Phenolic Thermal Protection Material Strips. Polymers, 17, 1045. https://doi.org/10.3390/polym17081045
Imran, A., Siregar, J., Rejab, M., Cionita, T., Hadi, A., Jaafar, J., Fitriyana, D., & Dewi, R. (2024). Opportunities and challenges in the sustainable integration of natural fibers and particles in friction materials for eco-friendly brake pads. Mechanical Engineering for Society and Industry, 4, 337–367. https://doi.org/10.31603/mesi.12271
Singh, J., & Singh, H. (2015). A Review on Utilization of Rice Husk Ash in Concrete. International Journal of Innovations in Engineering Research and Technology, 2(11), 1–7.
Khafidh, M., Putera, F. P., Yotenka, R., Fitriyana, D. F., Widodo, R. D., Ismail, R., Irawan, A. P., Cionita, T., Siregar, J. P., & Ismail, N. H. (2023). A study on characteristics of brake pad composite materials by varying the composition of epoxy, rice husk, Al2O3, and Fe2O3. Automotive Experiences, 6(2), 303–319. https://doi.org/10.31603/ae.9121
Li, T., Song, Z., Yang, X., & Du, J. (2022). Influence of processing parameters on the mechanical properties of peek plates by hot compression molding. Materials, 16(1), 36.
Lv, W., Wang, T., Wang, Q., Yap, K. K., Song, F., & Wang, C. (2024). Tribological and Mechanochemical properties of nanoparticle-filled polytetrafluoroethylene composites under different loads. Polymers, 16(7), 894.
Melvin, G., Chai, K. F., & Tamiri, F. M. (2019). Characterization of carbonized waste materials: Rice husk and saw dust. 606(1), 012002.
Mohammed, K., Zulkifli, R., Tahir, M. F. M., & Gaaz, T. S. (2024). A study of mechanical properties and performance of bamboo fiber/polymer composites. Results in Engineering, 23, 102396.
Oladokun, T., Stephen, J. T., Adebayo, A., & Adeyemi, D. (2019). Effect of Moulding Pressure on Brake Lining Produced from Industrial Waste Material: Sawdust. European Journal of Engineering Research and Science, 4, 62–68. https://doi.org/10.24018/ejers.2019.4.6.1368
Sallal, H. A., Abdul-Hamead, A. A., & Othman, F. M. (2020). Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite. Defence Technology, 16(2), 425–431.
Sellami, A., & Elleuch, R. (2023). Green composite friction materials: A review of a new generation of eco-friendly brake materials for sustainability. Environmental Engineering Research, 29. https://doi.org/10.4491/eer.2023.226
Sunardi, S., Hamdi, S., Saefuloh, I., Sudrajad, A., Ula, S., & Fawaid, M. (2024). Perilaku Laju Keausan dan Kekerasan Komposit Epoksi yang Diperkuat dengan Serat Gelas dan Partikel Bambu. Jurnal Teknik Mesin, 21(2), 64–72.
Surid, S., Patwary, M. A., & Gafur, M. (2020). A Review on Fabrication and Physico-Mechanical Characterizations of Fiber Reinforced Biocomposites. International Journal of Scientific & Technology Research, 9, 399–412.
Tong, H., Qian, L., Leng, F.-G., & Qiao, T.-L. (2021). Research progress of rice husk ash in solidified soil. 293, 02018. https://doi.org/10.1051/e3sconf/202129302018