Main Article Content

Abstract

The increasing volume of global plastic waste, which has exceeded 367 million tons per year, has created a serious environmental problem, particularly in Indonesia, which contributes about 17% of the national waste. Mechanical recycling and direct incineration are considered less optimal due to limited product quality and potential pollution. As an alternative, pyrolysis offers a promising technology to convert plastic waste into liquid fuel (pyrolysis oil) with characteristics similar to conventional fuels. This study utilized even-numbered plastic wastes (HDPE, LDPE, PS) through pyrolysis at 300 °C for 45 minutes with a reactor capacity of 5 kg, producing 1 L of pyrolysis oil per batch. Characterization results indicated that most fuel parameters met ASTM standards, such as Total Acid Number (0.02 mg KOH/g), flash point (61 °C), and sulphur content (0.005%), although some deviations were found in water content, carbon residue, and cetane number. To improve its quality, 0.2% solketal was added as an oxygenated additive, which significantly enhanced engine performance and reduced emissions. Performance testing using a D-4D diesel engine demonstrated improved fuel efficiency, while emission tests showed lower opacity and CO levels, along with more complete combustion indicated by higher CO₂ emissions. These findings confirm that integrating pyrolysis with solketal additives can produce a more efficient, environmentally friendly alternative fuel with potential for application in sustainable energy industries.

Keywords

emission test fuel additive liquid fuel plastic waste pyrolysis solketal

Article Details

How to Cite
Fitri, N., Royhan, H. ., Maulidia, N. A. ., Arman, R. ., Irawan, A. I., Supriadi, E. ., Jahiding, M. J., & Mashuni. (2026). Studi Kualitas Bahan Bakar Cair Hasil Pirolisis Limbah Plastik dengan Penambahan Aditif Solketal: indonesia. AJIE (Asian Journal of Innovation and Entrepreneurship), 10(1), 30–40. https://doi.org/10.20885/ajie.vol10.iss1.art3

References

  1. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94.
  2. Chandara, H.C., Sunjoto, & Sarto (2015). Plastic Recyling In Indonesia By Converting Plastic Wastes (PET, HDPE, LDPE, and PP) Into Plastic Pellets. ASEAN Journal of Systems Engineering, 3(2), 65-72.
  3. Direktorat Jenderal Minyak dan Gas Bumi. (2021). Profil Peraturan 135.K/HK.02/MEM.M/2021 [PDF]. https://migas.esdm.go.id/cms/uploads/regulasi/profil_peraturan_135.pdf
  4. Dyer, A. C., Nahil, M. A., & Williams, P. T. (2021). Catalytic Co-Pyrolysis of Biomass and Waste Plastics As a Route to Upgraded Bio-Oil. Journal of the Energy Institute, 97, 27–36.
  5. Fitri, N., Sulistia, D., Abraham, A., & Aditya, I. (2024a). The effect of Grinzest bio-additives on BBM fuel consumption in mining vehicles at PT Arutmin Indonesia Kintap. IJCR–Indonesian Journal of Chemical Research, 9(2), 163–174.
  6. Fitri, N., Syahrizal, A. K. A., Hidayat, A., Dharma, I. A., Maulidiyah, R., Khofifah, Sukri, Q., & Syahputra, R. (2024b). Sintesis FAME dari jelantah sebagai bahan baku biosolar dan blending dengan bioaditif fraksi minyak atsiri serai wangi untuk optimalisasi pembakaran pada mesin diesel. Prosiding Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat, 76–100.
  7. Fitri, N., Mauludiyah, R., Sukri, Q., Syahputra, R., & Ila, I. (2024c). Inisiasi Z-fract formula sebagai bio-aditif efisiensi mesin industri. IJCR–Indonesian Journal of Chemical Research, 9(1), 49–61.
  8. Fitri, N., Riza, R., Akbari, M. K., Khonitah, N., Fahmi, R. L., & Fatimah, I. (2022). Identification of Citronella Oil Fractions as Efficient Bio-Additive for Diesel Engine Fuel. Designs, 6(1), 15.
  9. Jahiding, M., Mashuni, M., Hamid, F. H., Ilmawati, W. O. S., & Hamdana, R. (2024). The production of renewable fuels sago dregs and low-density polyethylene by pyrolysis and its characterization. Science and Technology Indonesia, 9(3), 565-576.
  10. Jahiding, M., Rizki, R. S., & Hasan, E. S. (2021). Investigating the effect of pyro-catalytic temperature on gasoline production from low density polyethylene (LDPE) plastics waste. In Journal of Physics: Conference Series, 1899(1), 012126.
  11. Jahiding, M., Usman, I., Rizki, R. S., Hasan, E. S., & Mashuni, M. (2023). Chemical and physical properties of plastic fuel from high and low-density polyethylene waste produced by pyrolysis method. In The 2nd International Symposium on Physics and Applications 2021, 2604(1), 020013.
  12. Kementerian Lingkungan Hidup dan Kehutanan. (2024). SIPSN – Sistem Informasi Pengelolaan Sampah Nasional. Diakses 18 Oktober 2025, dari https://sipsn.kemenlh.go.id/sipsn/
  13. Knothe, G. (2010). Biodiesel and renewable diesel: a comparison. Progress in energy and combustion science, 36(3), 364-373.
  14. Lim, Y. K., Lee, J. M., Jeong, C. S., Kim, J. R., & Yim, E. S. (2011). Improvement of Low Temperature Fuel Characteristics by Pour Point Depressant. Tribology and Lubricants, 27(2), 109-114.
  15. Liu, J., Chen, X., Chen, W., Xia, M., Chen, Y., Chen, H., ... & Yang, H. (2023). Biomass pyrolysis mechanism for carbon-based high-value products. Proceedings of the Combustion Institute, 39(3), 3157-3181.
  16. Mawaddah, S. M., Chalid, M., Maulidina, S. A., Ashanti, C. K., & Nugraha, A. F. (2023). Post-consumer recycling of polymers for sustainable 3D printing filament material. Jurnal Sains Materi Indonesia, 25(1), 55- 66.
  17. Mishra, R. K., & Mohanty, K. (2020). Co-Pyrolysis of Waste Biomass and Waste Plastics (Polystyrene and Waste Nitrile Gloves) into Renewable Fuel and Value-Added Chemicals. Carbon Resources Conversion, 3, 145–155.
  18. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848-889.
  19. Nabi, M. N., Hoque, S. M. N., & Akhter, M. S. (2009). Karanja (Pongamia pinnata) biodiesel production and fuel properties. Renewable Energy, 34(5), 1225-1228.
  20. Qian, Q., & Ren, J. (2024). From plastic waste to potential wealth: Upcycling technologies, process synthesis, assessment and optimization. Science of the Total Environment, 907, 167897.
  21. Rahman, M. M., & Abdullah, A. M. (2020). Pyrolysis of plastic waste: A review on plastic types, process parameters, and product properties. Indonesian Journal of Chemical Engineering, 20(1), 23-35.
  22. Shahir, S. A., Masjuki, H. H., Kalam, M. A., & Imran, A. (2014). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 45, 819-836.
  23. Singh, S. P., & Singh, D. (2017). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216.
  24. Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86.
  25. Wang, Z., Burra, K. G., Lei, T., & Gupta, A. K. (2021). Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review. Progress in Energy and Combustion Science, 84, 100899.
  26. Zhang, X., Zhou, J., Sun, S., Sun, R., & Qin, M. (2015). Numerical investigation of low NOx combustion strategies in tangentially-fired coal boilers. Fuel, 142, 215-221.