Main Article Content

Abstract

This study investigates the influence of artificial intelligence (AI) implementation on recruitment outcomes, focusing on the mediating role of candidate experience and the moderating effects of trust in AI and organizational culture. Using a quantitative research design, data were collected from human resource (HR) professionals across various industries in Indonesia. The results reveal that AI implementation positively affects candidate experience and the quality of hires, with candidate experience as a significant mediator in these relationships. Trust in AI is found to play a dual role, both directly influencing candidate experience and quality of hires and moderating the relationship between AI implementation and candidate experience. Organizational culture, particularly an innovation-oriented culture, strengthens the impact of AI implementation on candidate experience. The study contributes to the theoretical understanding of candidate experience as a higher-order construct and highlights the importance of trust and cultural alignment in AI-driven recruitment. Practical implications emphasize the need for transparent AI systems, regular feedback, and fostering an innovation-oriented culture to enhance recruitment outcomes. Limitations include the cross-sectional design and the focus on a single country, suggesting opportunities for future research to explore longitudinal effects and cross-cultural comparisons.

Keywords

Artificial intelligence Candidate experience Trust Organizational culture Quality of hires

Article Details

How to Cite
Jamaluddin, Alam, R., Lantara, N. ., Razak, A. R. ., & Hatidja, S. (2025). The role of artificial intelligence in recruitment: Examining candidate experience as a mediator and organizational culture as a moderator in quality of hires. Asian Management and Business Review, 5(1), 160–177. https://doi.org/10.20885/AMBR.vol5.iss1.art11

References

  1. Alam, R. (2025). Building adaptive workforces: HRM and digital competency in tourism innovation. Global Review of Tourism and Social Sciences, 1(2), 119-128. https://doi.org/10.53893/grtss.v1i2.357
  2. Albaroudi, E., Mansouri, T., & Alameer, A. (2024). A comprehensive review of AI techniques for addressing algorithmic bias in job hiring. AI, 5(1), 383–404. https://doi.org/10.3390/ai5010019
  3. Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). AI-powered innovation in digital transformation: key pillars and industry impact. Sustainability, 16(5), 1790. https://doi.org/10.3390/su16051790
  4. Aravantinos, S., Lavidas, K., Voulgari, I., Papadakis, S., Karalis, T., & Komis, V. (2024). Educational approaches with aι in primary school settings: a systematic review of the literature available in Scopus. Education Sciences, 14(7), 744. https://doi.org/10.3390/educsci14070744
  5. Aysolmaz, B., Müller, R., & Meacham, D. (2023). The public perceptions of algorithmic decision-making systems: results from a large-scale survey. Telematics and Informatics, 79, 101954. https://doi.org/10.1016/j.tele.2023.101954
  6. Balasundaram, S., Venkatagiri, S., & Sathiyaseelan, A. (2022). Using AI to enhance candidate experience in high volume hiring: a conceptual review and case study. Proceedings of the Replenish, Restructure & Reinvent: Technology Fueled Transformation for Sustainable Future, 21-22.
  7. Basalamah, J., Syahnur, M. H., & Basalamah, A. (2020). Recruitment and selection practice on Indonesia state-owned enterprise: a literature review. Manajemen Bisnis, 10(2), 9-16. https://doi.org/10.22219/jmb.v10i2.13093
  8. Becker, W. J., Connolly, T., & Slaughter, J. E. (2010). The effect of job offer timing on offer acceptance, performance, and turnover. Personnel Psychology, 63(1), 223–241. https://doi.org/10.1111/j.1744-6570.2009.01167.x
  9. Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., Boselie, P., Lee Cooke, F., Decker, S., DeNisi, A., Dey, P. K., Guest, D., Knoblich, A. J., Malik, A., Paauwe, J., Papagiannidis, S., Patel, C., Pereira, V., Ren, S., … Varma, A. (2023). Human resource management in the age of generative artificial intelligence: perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606–659. https://doi.org/10.1111/1748-8583.12524
  10. Burton, J. W., Stein, M., & Jensen, T. B. (2020). A systematic review of algorithm aversion in augmented decision making. Journal of Behavioral Decision Making, 33(2), 220–239. https://doi.org/10.1002/bdm.2155
  11. Cascio, W. F., & Boudreau, J. W. (2016). The search for global competence: from international HR to talent management. Journal of World Business, 51(1), 103–114. https://doi.org/10.1016/j.jwb.2015.10.002
  12. Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 567-579. https://doi.org/10.1057/s41599-023-02079-x
  13. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  14. Etikan, I. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11
  15. Ferrara, E. (2023). Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003
  16. Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: review of empirical research. Academy of Management Annals, 14(2), 627–660. https://doi.org/10.5465/annals.2018.0057
  17. Haime, A., Vallejo, A., & Schwindt-Bayer, L. (2022). Candidate experience and electoral success. Latin American Research Review, 57(1), 170–187. https://doi.org/10.1017/lar.2022.10
  18. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
  19. Harianto, E., Teofilus, T., Wahyudono, D. B. K., Menny, A. H., & Azizurrohman, M. (2023). The phenomenon of discomfort toward organizational change moderated by empowering leadership. Jurnal Aplikasi Manajemen, 21(4), 863–875. https://doi.org/10.21776/ub.jam.2023.021.04.01
  20. Hatidja, S., Syahribulan, S., Thaha, S., Jamaluddin, J., & Azizurrohman, M. (2024). Fostering employee job satisfaction in the hospitality industry: the role of organizational culture, motivation, and appraisals mediated by service innovations case of hotels in Bali. STI Policy and Management Journal, 9(2), 56-72. https://doi.org/10.14203/STIPM.2024.402
  21. Horodyski, P. (2023). Applicants’ perception of artificial intelligence in the recruitment process. Computers in Human Behavior Reports, 11, 100303. https://doi.org/10.1016/j.chbr.2023.100303
  22. Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
  23. Jamaluddin (2025). The impact of remote working on employee productivity during COVID-19 in Indonesia: the moderating role of job level and the influence of cultural adaptability. Global Review of Tourism and Social Sciences, 1(2), 88-98. https://doi.org/10.53893/grtss.v1i2.356
  24. Koller, K., Pankowska, P. K., & Brick, C. (2023). Identifying bias in self-reported pro-environmental behavior. Current Research in Ecological and Social Psychology, 4, 100087. https://doi.org/10.1016/j.cresp.2022.100087
  25. Lavidas, K., Voulgari, I., Papadakis, S., Athanassopoulos, S., Anastasiou, A., Filippidi, A., Komis, V., & Karacapilidis, N. (2024). Determinants of humanities and social sciences students’ intentions to use artificial intelligence applications for academic purposes. Information, 15(6), 314. https://doi.org/10.3390/info15060314
  26. Lawande, N. (2024). Exploring the trends of artificial intelligence in recruitment: a bibliometric study. International Journal of Supply and Operations Management, 11(3), 351-366. https://doi.org/10.22034/ijsom.2024.110284.3016
  27. Li, J., Zhou, Y., Yao, J., & Liu, X. (2021). An empirical investigation of trust in AI in a Chinese petrochemical enterprise based on institutional theory. Scientific Reports, 11(1), 13564. https://doi.org/10.1038/s41598-021-92904-7
  28. Lo Piccolo, E., Petruzziello, G., Chiesa, R., Pietrantoni, L., & Mariani, M. G. (2024). Fairness in e-recruitment: examining procedural justice perceptions and job seekers’ intentions. Sustainability, 16(18), 8124. https://doi.org/10.3390/su16188124
  29. Liehner, G. L., Biermann, H., Hick, A., Brauner, P., & Ziefle, M. (2023). Perceptions, attitudes and trust towards artificial intelligence-an assessment of the public opinion. Artificial Intelligence and Social Computing, 72, 32-41. https://doi.org/10.54941/ahfe1003271
  30. Murire, O. T. (2024). Artificial intelligence and its role in shaping organizational work practices and culture. Administrative Sciences, 14(12), 316. https://doi.org/10.3390/admsci14120316
  31. Murugesan, U., Subramanian, P., Srivastava, S., & Dwivedi, A. (2023). A study of artificial intelligence impacts on human resource digitalization in industry 4.0. Decision Analytics Journal, 7, 100249. https://doi.org/10.1016/j.dajour.2023.100249
  32. Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): applying a system dynamics perspective in a cross-country setting. Technological Forecasting and Social Change, 201, 123203. https://doi.org/10.1016/j.techfore.2023.123203
  33. Novozhilova, E., Mays, K., Paik, S., & Katz, J. E. (2024). More capable, less benevolent: trust perceptions of AI systems across societal contexts. Machine Learning and Knowledge Extraction, 6(1), 342–366. https://doi.org/10.3390/make6010017
  34. Oman, Z. U., Siddiqua, A., & Noorain, R. (2024). Artificial intelligence and its ability to reduce recruitment bias. World Journal of Advanced Research and Reviews, 24(1), 551–564. https://doi.org/10.30574/wjarr.2024.24.1.3054
  35. Ortega, L., & Dpa, J. P. A. (2025). The nexus of organizational culture and work performance: the mediating role of organizational politics in local government setting. Global Review of Tourism and Social Sciences, 1(2), 129-144. https://doi.org/10.53893/grtss.v1i2.362
  36. Papagiannidis, E., Mikalef, P., Conboy, K., & Van De Wetering, R. (2023). Uncovering the dark side of AI-based decision-making: a case study in a B2B context. Industrial Marketing Management, 115, 253–265. https://doi.org/10.1016/j.indmarman.2023.10.003
  37. Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. ‘Sandy,’ … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y
  38. Rani, J. (2024). AI in HR: revolutionizing recruitment, retention, and employee engagement. Journal of Informatics Education and Research, 4(3), 959–968. https://doi.org/10.52783/jier.v4i3.1410
  39. Rathore, S. (2023). The impact of AI on recruitment and selection processes: analysing the role of AI in automating and enhancing recruitment and selection procedures. International Journal for Global Academic & Scientific Research, 2(2), 78–93. https://doi.org/10.55938/ijgasr.v2i2.50
  40. Rehmert, J. (2021). Behavioral consequences of open candidate recruitment. Legislative Studies Quarterly, 46(2), 427–458. https://doi.org/10.1111/lsq.12283
  41. Roppelt, J. S., Schuster, A., Greimel, N. S., Kanbach, D. K., & Sen, K. (2025). Towards effective adoption of artificial intelligence in talent acquisition: a mixed method study. International Journal of Information Management, 82, 102870. https://doi.org/10.1016/j.ijinfomgt.2025.102870
  42. Rožman, M., Oreški, D., & Tominc, P. (2023). Artificial intelligence-supported reduction of employees’ workload to increase the company’s performance in today’s VUCA environment. Sustainability, 15(6), 5019. https://doi.org/10.3390/su15065019
  43. Silitonga, F., & Isbah, M. F. (2023). Artificial intelligence and the future of work in the Indonesian public sector. Jurnal Ilmu Sosial dan Humaniora, 12(2), 296–308. https://doi.org/10.23887/jish.v12i2.62297
  44. Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI capabilities enable business model innovation: scaling AI through co-evolutionary processes and feedback loops. Journal of Business Research, 134, 574–587. https://doi.org/10.1016/j.jbusres.2021.05.009
  45. Syafriani, V., Nuryasni, & Yuliani, T. (2025). Bridging theories and practice: organizational management in an Indonesian school context. Global Review of Tourism and Social Sciences, 1(2), 99-118. https://doi.org/10.53893/grtss.v1i2.338
  46. Sýkorová, Z., Hague, D., Dvouletý, O., & Procházka, D. A. (2024). Incorporating artificial intelligence (AI) into recruitment processes: ethical considerations. Vilakshan - XIMB Journal of Management, 21(2), 293–307. https://doi.org/10.1108/XJM-02-2024-0039
  47. Tangi, L., Noordt, C. V., Combetto, M., & Gattwinkel, D. (2022). AI Watch: European landscape on the use of artificial intelligence by the public sector. Publications Office. https://data.europa.eu/doi/10.2760/39336
  48. Tay, C. E., Ying, C. Y., Yeo , S. F., & Cheah, C. S. (2024). Revolutionizing recruitment: the rise of artificial intelligence in talent acquisition. PaperASIA, 40(6b), 191–199. https://doi.org/10.59953/paperasia.v40i6b.270
  49. Ulnicane, I. (2022). Artificial intelligence in the European Union. In Hoerber, T., Weber, G., & Cabras, I. (Eds.), The Routledge Handbook of European Integrations (1st ed., pp. 254–269). New York: Routledge. https://doi.org/10.4324/9780429262081-19
  50. Van Esch, P., Black, J. S., & Arli, D. (2021). Job candidates’ reactions to AI-Enabled job application processes. AI and Ethics, 1(2), 119–130. https://doi.org/10.1007/s43681-020-00025-0
  51. Van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: the next phase in job application and selection. Computers in Human Behavior, 90, 215–222. https://doi.org/10.1016/j.chb.2018.09.009
  52. Venugopal, M., Madhavan, V., Prasad, R., & Raman, R. (2024). Transformative AI in human resource management: enhancing workforce planning with topic modeling. Cogent Business & Management, 11(1), 2432550. https://doi.org/10.1080/23311975.2024.2432550
  53. Vivek, R. (2023). Enhancing diversity and reducing bias in recruitment through AI: a review of strategies and challenges. Информатика. Экономика. Управление - Informatics. Economics. Management, 2(4), 0101–0118. https://doi.org/10.47813/2782-5280-2023-2-4-0101-0118
  54. Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: a systematic literature review. International Journal of Information Management Data Insights, 1(2), 100047. https://doi.org/10.1016/j.jjimei.2021.100047
  55. Wang, T.-L., & Oscar, W. (2024). How supportive and competitive work environments influence job attitudes and performance in French sales roles. Global Review of Tourism and Social Sciences, 1(1), 1–12. https://doi.org/10.53893/grtss.v1i1.322
  56. Xiong, Y., & Kim, J. K. (2025). Who wants to be hired by AI? how message frames and AI transparency impact individuals’ attitudes and behaviors toward companies using AI in hiring. Computers in Human Behavior: Artificial Humans, 3, 100120. https://doi.org/10.1016/j.chbah.2025.100120
  57. Zahidi, F., Kaluvilla, B. B., & Mulla, T. (2024). Embracing the new era: artificial intelligence and its multifaceted impact on the hospitality industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(4), 100390. https://doi.org/10.1016/j.joitmc.2024.100390
  58. Zhang, W., Zeng, X., Liang, H., Xue, Y., & Cao, X. (2023). Understanding how organizational culture affects innovation performance: a management context perspective. Sustainability, 15(8), 6644. https://doi.org/10.3390/su15086644
  59. Zirar, A., Ali, S. I., & Islam, N. (2023). Worker and workplace artificial intelligence (AI) coexistence: emerging themes and research agenda. Technovation, 124, 102747. https://doi.org/10.1016/j.technovation.2023.102747