Main Article Content

Abstract

Live-streaming commerce has grown increasingly popular in the last few years. It allows influencers to show and explain products in real-time while viewers can make purchases instantly. This study decisively examines the impact of people’s trust in influencers on their propensity to make impulse purchases. The researchers collected the information through an online questionnaire from 297 participants, who were selected using convenience sampling based on their availability and ease of access. The responses were then analyzed using the PLS-SEM method. The findings indicate that trust in influencers significantly influences consumers’ emotional reactions and impulsive purchasing decisions. Those who have doubts are reluctant to make purchases; those who think the influencer is trustworthy make rapid purchase decisions. A barrier, uncertainty leaves consumers to consider their options. This outcome underlines the need of companies and influencers to lower uncertainty during live-streaming events. They can fulfill this by providing honest, open information, proving the quality of the good, and quickly answering questions. By doing this, one promotes confidence and faster purchase decisions. According to this study, influencing impulse buying mostly depends on trust and clarity. Hence, organizations could boost their live-stream marketing campaigns and increase sales by utilizing these elements.

Keywords

Impulse buying Live-streaming Credibility Uncertainty Social media influencer

Article Details

How to Cite
Setyanta, B., Suryaningtiyas, Y. D., Arum, M. P., Fauzi, R. U. A., & Kadi, D. C. A. (2026). The power of credibility: How influencer credibility impacts impulsive buying in live-streaming commerce. Asian Management and Business Review, 6(1), 103–119. https://doi.org/10.20885/AMBR.vol6.iss1.art7

References

  1. Abdul Aziz, N., Othman, N. A., & Abdul Murad, S. M. Bin. (2023). The effects of social support and social media influencers’ credibility on emotional brand attachment: the mediating roles of trust in multichannel. Social Sciences and Humanities Open, 8(1), 100727. https://doi.org/10.1016/j.ssaho.2023.100727 DOI: https://doi.org/10.1016/j.ssaho.2023.100727
  2. Al-Adwan, A. S., & Yaseen, H. (2023). Solving the product uncertainty hurdle in social commerce: the mediating role of seller uncertainty. International Journal of Information Management Data Insights, 3(1), 100169. https://doi.org/10.1016/j.jjimei.2023.100169 DOI: https://doi.org/10.1016/j.jjimei.2023.100169
  3. Annur, C. M. (2022). Survei Jakpat: Shopee Rajai Penggunaan Live Shopping di Indonesia. https://databoks.katadata.co.id/teknologi-telekomunikasi/statistik/1495a09cd46b53b/survei-jakpat-shopee-rajai-penggunaan-live-shopping-di-indonesia. Retrieved May 23, 2024
  4. Azad Moghddam, H., Carlson, J., Wyllie, J., & Mahmudur Rahman, S. (2024). Scroll, stop, shop: decoding impulsive buying in social commerce. Journal of Business Research, 182(June), 114776. https://doi.org/10.1016/j.jbusres.2024.114776 DOI: https://doi.org/10.1016/j.jbusres.2024.114776
  5. Bawack, R. E., Bonhoure, E., Kamdjoug, J. R. K., & Giannakis, M. (2023). How social media live streams affect online buyers: a uses and gratifications perspective. International Journal of Information Management, 70(January), 102621. https://doi.org/10.1016/j.ijinfomgt.2023.102621 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102621
  6. Beichert, M., Bayerl, A., Goldenberg, J., & Lanz, A. (2024). Revenue generation through influencer marketing. Journal of Marketing, 88(4), 40-63. https://doi.org/10.1177/00222429231217471 DOI: https://doi.org/10.1177/00222429231217471
  7. Belanche, D., Casaló, L. V., Flavián, M., & Ibáñez-Sánchez, S. (2021). Building influencers’ credibility on Instagram: effects on followers’ attitudes and behavioral responses toward the influencer. Journal of Retailing and Consumer Services, 61(June), 102585. https://doi.org/10.1016/j.jretconser.2021.102585 DOI: https://doi.org/10.1016/j.jretconser.2021.102585
  8. Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78–117. https://doi.org/10.1177/0049124187016001004 DOI: https://doi.org/10.1177/0049124187016001004
  9. Bethlehem, J. (2010). Selection bias in web surveys. International Statistical Review, 78(2), 161–188. https://doi.org/10.1111/j.1751-5823.2010.00112.x DOI: https://doi.org/10.1111/j.1751-5823.2010.00112.x
  10. Chen, N., & Yang, Y. (2023). The role of influencers in live streaming e-commerce: influencer trust, attachment, and consumer purchase intention. Journal of Theoretical and Applied Electronic Commerce Research, 18(3), 1601–1618. https://doi.org/10.3390/jtaer18030081 DOI: https://doi.org/10.3390/jtaer18030081
  11. Chen, T., Samaranayake, P., Cen, X. Y., Qi, M., & Lan, Y. C. (2022). The impact of online reviews on consumers’ purchasing decisions: evidence from an eye-tracking study. Frontiers in Psychology, 13(June), 865702. https://doi.org/10.3389/fpsyg.2022.865702 DOI: https://doi.org/10.3389/fpsyg.2022.865702
  12. Chen, X., Shen, J., & Wei, S. (2023). What reduces product uncertainty in live streaming e-commerce? from a signal consistency perspective. Journal of Retailing and Consumer Services, 74(June), 103441. https://doi.org/10.1016/j.jretconser.2023.103441 DOI: https://doi.org/10.1016/j.jretconser.2023.103441
  13. Chen, Y., Qin, Z., Yan, Y., & Huang, Y. (2024). The power of influencers: how does influencer marketing shape consumers’ purchase intentions? Sustainability (Switzerland) , 16(13), 1–18. https://doi.org/10.3390/su16135471 DOI: https://doi.org/10.3390/su16135471
  14. Cheng, H. H. (2020). The effects of product stimuli and social stimuli on online impulse buying in live streams. ACM International Conference Proceeding Series, 31–35. https://doi.org/10.1145/3409891.3409895 DOI: https://doi.org/10.1145/3409891.3409895
  15. Chetioui, Y., Benlafqih, H., & Lebdaoui, H. (2020). How fashion influencers contribute to consumers’ purchase intention. Journal of Fashion Marketing and Management, 24(3), 361–380. https://doi.org/10.1108/JFMM-08-2019-0157 DOI: https://doi.org/10.1108/JFMM-08-2019-0157
  16. Chung, J. (2020). Effect of quality uncertainty, regulatory focus, and promotional strategies on perceived savings for sustainable marketing. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145653 DOI: https://doi.org/10.3390/su12145653
  17. Crnjak-Karanović, B., Kursan Milaković, I., & Elez, J. (2023). Which decision-making stages matter more? influencer’s perceived credibility, sponsorship and moderating role of trust. Young Consumers, 24(6), 649–668. https://doi.org/10.1108/YC-08-2022-1590 DOI: https://doi.org/10.1108/YC-08-2022-1590
  18. Dhun, & Dangi, H. K. (2023). Influencer marketing: role of influencer credibility and congruence on brand attitude and eWOM. Journal of Internet Commerce, 22(S1), S28–S72. https://doi.org/10.1080/15332861.2022.2125220 DOI: https://doi.org/10.1080/15332861.2022.2125220
  19. Dwidienawati, D., Tjahjana, D., Abdinagoro, S. B., Gandasari, D., & Munawaroh. (2020). Customer review or influencer endorsement: which one influences purchase intention more? Heliyon, 6(11), e05543. https://doi.org/10.1016/j.heliyon.2020.e05543 DOI: https://doi.org/10.1016/j.heliyon.2020.e05543
  20. Farivar, S., & Wang, F. (2022). Effective influencer marketing: a social identity perspective. Journal of Retailing and Consumer Services, 67(May), 103026. https://doi.org/10.1016/j.jretconser.2022.103026 DOI: https://doi.org/10.1016/j.jretconser.2022.103026
  21. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312 DOI: https://doi.org/10.2307/3151312
  22. Fu, J. R., & Hsu, C. W. (2023). Live-streaming shopping: the impacts of para-social interaction and local presence on impulse buying through shopping value. Industrial Management and Data Systems, 123(7), 1861–1886. https://doi.org/10.1108/IMDS-03-2022-0171 DOI: https://doi.org/10.1108/IMDS-03-2022-0171
  23. Gu, X., Zhang, X., & Kannan, P. K. (2024). Influencer mix strategies in livestream commerce: impact on product sales. Journal of Marketing, 88(4), 64-83. https://doi.org/10.1177/00222429231213581 DOI: https://doi.org/10.1177/00222429231213581
  24. Hagger, M. S., & Hamilton, K. (2025). Progress on theory of planned behavior research: advances in research synthesis and agenda for future research. Journal of Behavioral Medicine, 43–56. https://doi.org/10.1007/s10865-024-00545-8 DOI: https://doi.org/10.1007/s10865-024-00545-8
  25. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
  26. Han, M. C. (2023). Checkout button and online consumer impulse-buying behavior in social commerce: a trust transfer perspective. Journal of Retailing and Consumer Services, 74(April), 103431. https://doi.org/10.1016/j.jretconser.2023.103431 DOI: https://doi.org/10.1016/j.jretconser.2023.103431
  27. Handranata, Y. W., & Kalila, S. (2025). Attitude toward fashion influencers and its impact on purchase behavior: the roles of brand attitude and purchase intention. Frontiers in Communication, 10, 1583602. https://doi.org/10.3389/fcomm.2025.1583602 DOI: https://doi.org/10.3389/fcomm.2025.1583602
  28. He, S., & Rucker, D. D. (2023). How uncertainty affects information search among consumers: a curvilinear perspective. Marketing Letters, 34(3), 415–428. https://doi.org/10.1007/s11002-022-09657-0 DOI: https://doi.org/10.1007/s11002-022-09657-0
  29. Hewei, T. (2022). Influence of online comments on clothing impulse buying behavior in mobile short video app live broadcast. Frontiers in Psychology, 13(August), 1–11. https://doi.org/10.3389/fpsyg.2022.913073 DOI: https://doi.org/10.3389/fpsyg.2022.913073
  30. Hong, Y., & Pavlou, P. A. (2014). Product fit uncertainty in online markets: nature, effects, and antecedents. Information Systems Research, 25(2), 328–344. https://doi.org/10.1287/isre.2014.0520 DOI: https://doi.org/10.1287/isre.2014.0520
  31. Hu, H., Zhang, D., & Wang, C. (2019). Impact of social media influencers’ endorsement on application adoption: a trust transfer perspective. Social Behavior and Personality, 47(11). https://doi.org/10.2224/sbp.8518 DOI: https://doi.org/10.2224/sbp.8518
  32. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 DOI: https://doi.org/10.1080/10705519909540118
  33. Huo, C., Wang, X., Sadiq, M. W., & Pang, M. (2023). Exploring factors affecting consumer’s impulse buying behavior in live-streaming shopping: an interactive research based upon SOR Model. SAGE Open, 13(2), 1–15. https://doi.org/10.1177/21582440231172678 DOI: https://doi.org/10.1177/21582440231172678
  34. Ilieva, G., Yankova, T., Ruseva, M., Dzhabarova, Y., Klisarova-Belcheva, S., & Bratkov, M. (2024). Social media influencers: customer attitudes and impact on purchase behaviour. Information (Switzerland), 15(6), 15060359. https://doi.org/10.3390/info15060359 DOI: https://doi.org/10.3390/info15060359
  35. Islam, T., & Hussain, M. (2023). How consumer uncertainty intervene country of origin image and consumer purchase intention? the moderating role of brand image. International Journal of Emerging Markets, 18(11), 5049–5067. https://doi.org/10.1108/IJOEM-08-2021-1194 DOI: https://doi.org/10.1108/IJOEM-08-2021-1194
  36. Iyer, G. R., Blut, M., Xiao, S. H., & Grewal, D. (2020). Impulse buying: a meta-analytic review. Journal of the Academy of Marketing Science, 48(3), 384–404. https://doi.org/10.1007/s11747-019-00670-w DOI: https://doi.org/10.1007/s11747-019-00670-w
  37. Jamil, R. A., Qayyum, U., ul Hassan, S. R., & Khan, T. I. (2023). Impact of social media influencers on consumers’ well-being and purchase intention: a TikTok perspective. European Journal of Management and Business Economics, 33(3), 366-385. https://doi.org/10.1108/EJMBE-08-2022-0270 DOI: https://doi.org/10.1108/EJMBE-08-2022-0270
  38. Johnson, P. C., & Sandström, C. (2023). Making use of digital methods to study influencer marketing. The Dynamics of Influencer Marketing, 5. https://doi.org/10.4324/9781003134176 DOI: https://doi.org/10.4324/9781003134176-2
  39. Joshi, Y., Lim, W. M., Jagani, K., & Kumar, S. (2023). Social media influencer marketing: foundations, trends, and ways forward. Electronic Commerce Research (Issue 0123456789). Springer US, 25(2), 1199. https://doi.org/10.1007/s10660-023-09719-z DOI: https://doi.org/10.1007/s10660-023-09719-z
  40. Kästner, E., & Baczynski, M. (2025). Believe me, even though I’m fake: how the credibility of real and virtual influencers affects purchase intention. Journal of Media Business Studies, 00(00), 1–25. https://doi.org/10.1080/16522354.2025.2475424 DOI: https://doi.org/10.1080/16522354.2025.2475424
  41. Lehdonvirta, V., Oksanen, A., Räsänen, P., & Blank, G. (2021). Social media, web, and panel surveys: using non‐probability samples in social and policy research. Policy & internet, 13(1), 134-155. https://doi.org/doi: 10.1002/poi3.238 DOI: https://doi.org/10.1002/poi3.238
  42. Leung, F. F., Gu, F. F., Li, Y., Zhang, J. Z., & Palmatier, R. W. (2022). Influencer marketing effectiveness. Journal of Marketing, 86(6), 93–115. https://doi.org/10.1177/00222429221102889 DOI: https://doi.org/10.1177/00222429221102889
  43. Li, H., & See-To, E. W. K. (2024). Source credibility plays the central route: an elaboration likelihood model exploration in social media environment with demographic profile analysis. Journal of Electronic Business & Digital Economics, 3(1), 36–60. https://doi.org/10.1108/jebde-10-2022-0038 DOI: https://doi.org/10.1108/JEBDE-10-2022-0038
  44. Lin, S. C., Tseng, H. T., Shirazi, F., Hajli, N., & Tsai, P. T. (2023). Exploring factors influencing impulse buying in live streaming shopping: a stimulus-organism-response (SOR) perspective. Asia Pacific Journal of Marketing and Logistics, 35(6), 1383–1403. https://doi.org/10.1108/APJML-12-2021-0903 DOI: https://doi.org/10.1108/APJML-12-2021-0903
  45. Liu, B., & Wang, W. (2023). Live commerce retailing with online influencers: two business models. International Journal of Production Economics, 255(February 2022), 108715. https://doi.org/10.1016/j.ijpe.2022.108715 DOI: https://doi.org/10.1016/j.ijpe.2022.108715
  46. Liu, M. (2022). Determining the role of influencers’ marketing initiatives on fast fashion industry sustainability: the mediating role of purchase intention. Frontiers in Psychology, 13(June). https://doi.org/10.3389/fpsyg.2022.940649 DOI: https://doi.org/10.3389/fpsyg.2022.940649
  47. Liu, X., & Zheng, X. (2024). The persuasive power of social media influencers in brand credibility and purchase intention. Humanities and Social Sciences Communications, 11(1), 1–12. https://doi.org/10.1057/s41599-023-02512-1 DOI: https://doi.org/10.1057/s41599-023-02512-1
  48. Ma, X., Aw, E. C. X., & Filieri, R. (2023). From screen to cart: how influencers drive impulsive buying in livestreaming commerce?. Journal of Research in Interactive Marketing, 18(6), 1034-1058. https://doi.org/10.1108/JRIM-05-2023-0142 DOI: https://doi.org/10.1108/JRIM-05-2023-0142
  49. Majerczak, P., & Strzelecki, A. (2022). Trust, media credibility, social ties, and the intention to share information verification in an age of fake news. Behavioral Sciences, 12(2), 51. https://doi.org/10.3390/bs12020051 DOI: https://doi.org/10.3390/bs12020051
  50. Matt, C., & Hess, T. (2016). Product fit uncertainty and its effects on vendor choice: an experimental study. Electronic Markets, 26(1), 83–93. https://doi.org/10.1007/s12525-015-0199-5 DOI: https://doi.org/10.1007/s12525-015-0199-5
  51. Melnychuk, H. A., Arasli, H., & Nevzat, R. (2024). How to engage and attract virtual influencers’ followers: a new non-human approach in the age of influencer marketing. Marketing Intelligence and Planning, 42(3), 393–417. https://doi.org/10.1108/MIP-06-2023-0251 DOI: https://doi.org/10.1108/MIP-06-2023-0251
  52. Ming, J., Jianqiu, Z., Bilal, M., Akram, U., & Fan, M. (2021). How social presence influences impulse buying behavior in live streaming commerce? the role of S-O-R theory. International Journal of Web Information Systems, 17(4), 300–320. https://doi.org/10.1108/IJWIS-02-2021-0012 DOI: https://doi.org/10.1108/IJWIS-02-2021-0012
  53. Ngo, T. T. A., Nguyen, H. L. T., Nguyen, H. P., Mai, H. T. A., Mai, T. H. T., & Hoang, P. L. (2024). A comprehensive study on factors influencing online impulse buying behavior: evidence from Shopee video platform. Heliyon, 10(15), e35743. https://doi.org/10.1016/j.heliyon.2024.e35743 DOI: https://doi.org/10.1016/j.heliyon.2024.e35743
  54. Nugroho, S. D. P., Rahayu, M., & Hapsari, R. D. V. (2022). The impacts of social media influencer’s credibility attributes on gen Z purchase intention with brand image as mediation. International Journal of Research in Business and Social Science (2147- 4478), 11(5), 18–32. https://doi.org/10.20525/ijrbs.v11i5.1893 DOI: https://doi.org/10.20525/ijrbs.v11i5.1893
  55. Nyrhinen, J., Sirola, A., Koskelainen, T., Munnukka, J., & Wilska, T. A. (2024). Online antecedents for young consumers’ impulse buying behavior. Computers in Human Behavior, 153(December 2023), 108129. https://doi.org/10.1016/j.chb.2023.108129 DOI: https://doi.org/10.1016/j.chb.2023.108129
  56. Ohanian, R. (1990). Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. Journal of Advertising, 19(3), 39–52. https://doi.org/10.1080/00913367.1990.10673191 DOI: https://doi.org/10.1080/00913367.1990.10673191
  57. Ooi, K. B., Lee, V. H., Hew, J. J., Leong, L. Y., Tan, G. W. H., & Lim, A. F. (2023). Social media influencers: an effective marketing approach? Journal of Business Research, 160(February), 113773. https://doi.org/10.1016/j.jbusres.2023.113773 DOI: https://doi.org/10.1016/j.jbusres.2023.113773
  58. Osborne, J. W., & Costello, A. B. (2004). Sample size and subject to item ratio in principal components analysis. Practical Assessment, Research and Evaluation, 9(11). https://doi.org/https://doi.org/10.7275/ktzq-jq66
  59. Ozili, P. K. (2023). The acceptable R-square in empirical modelling for social science research. In Saliya, C. A. (Ed.), Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers (pp. 134–143). IGI Global. https://doi.org/10.4018/978-1-6684-6859-3.ch009 DOI: https://doi.org/10.4018/978-1-6684-6859-3.ch009
  60. Pan, M., Blut, M., Ghiassaleh, A., & Lee, Z. W. Y. (2025). Influencer marketing effectiveness: a meta-analytic review. Journal of the Academy of Marketing Science, 53(1), 52–78. https://doi.org/10.1007/s11747-024-01052-7 DOI: https://doi.org/10.1007/s11747-024-01052-7
  61. Penn, J. M., Petrolia, D. R., & Fannin, J. M. (2023). Hypothetical bias mitigation in representative and convenience samples. Applied Economic Perspectives and Policy, 45(2), 721–743. https://doi.org/10.1002/aepp.13374 DOI: https://doi.org/10.1002/aepp.13374
  62. Ponchio, M. C., Barth, N. L., & Zambaldi, F. (2021). Using the internet for data collection in business research. RAUSP Management Journal, 56(2), 254–258. https://doi.org/10.1108/rausp-04-2021-251 DOI: https://doi.org/10.1108/RAUSP-04-2021-251
  63. Ren, S., Karimi, S., Bravo Velázquez, A., & Cai, J. (2023). Endorsement effectiveness of different social media influencers: the moderating effect of brand competence and warmth. Journal of Business Research, 156(November 2022). https://doi.org/10.1016/j.jbusres.2022.113476 DOI: https://doi.org/10.1016/j.jbusres.2022.113476
  64. Reza, M. D. S. binti M., Tan, S. H., Chong, L. L., & Ong, H. B. (2024). Continuance usage intention of e-wallets: insights from merchants. International Journal of Information Management Data Insights, 4(2), 100254. https://doi.org/10.1016/j.jjimei.2024.100254 DOI: https://doi.org/10.1016/j.jjimei.2024.100254
  65. Ringle, C. M., Wende, S., & Becker, J.-M. (2024). SmartPLS 4. Bönningstedt: SmartPLS. https://www.smartpls.com/documentation/algorithms-and-techniques/model-fit. Retrieved June 11, 2025
  66. Rodrigues, R. I., Lopes, P., & Miguel Varela. (2021). Factors affecting impulse buying behavior of consumers. Frontiers in Psychology, 12(697080), 1–3. https://doi.org/10.3389/fpsyg.2021.697080 DOI: https://doi.org/10.3389/fpsyg.2021.697080
  67. Saini, S. (2024). Influencer credibility and brand image : the mediating effect of brand attitude in the premium cosmetics market. Jindal Journal of Business Research, 0(0), 1–18. https://doi.org/10.1177/22786821241287610 DOI: https://doi.org/10.1177/22786821241287610
  68. Septiani, L. (2023). TikTok: Potensi Bisnis Belanja Live Streaming Indonesia Rp 405 Triliun. https://katadata.co.id/digital/e-commerce/64a51690c7d5c/tiktok-potensi-bisnis-belanja-live-streaming-indonesia-rp-405-triliun. Retrieved June 10, 2024
  69. Singh, K. (2021). Influencer marketing from a consumer perspective: how attitude, trust, and word of mouth affect buying behavior. European Integration Studies, 1(15), 231–241. https://doi.org/10.5755/j01.eis.1.15.28803 DOI: https://doi.org/10.5755/j01.eis.1.15.28803
  70. Sun, B., Zhang, Y., & Zheng, L. (2023). Relationship between time pressure and consumers’ impulsive buying—role of perceived value and emotions. Heliyon, 9(12), e23185. https://doi.org/10.1016/j.heliyon.2023.e23185 DOI: https://doi.org/10.1016/j.heliyon.2023.e23185
  71. Sun, C., Fang, Y., Kong, M., Chen, X., & Liu, Y. (2022). Influence of augmented reality product display on consumers’ product attitudes: a product uncertainty reduction perspective. Journal of Retailing and Consumer Services, 64(October 2021), 102828. https://doi.org/10.1016/j.jretconser.2021.102828 DOI: https://doi.org/10.1016/j.jretconser.2021.102828
  72. Sun, M., & Tyagi, R. K. (2020). Product fit uncertainty and information provision in a distribution channel. Production and Operations Management, 29(10), 2381-2402. https://doi.org/10.1111/poms.13237 DOI: https://doi.org/10.1111/poms.13237
  73. Sung, E., Chung, W. Y., & Lee, D. (2023). Factors that affect consumer trust in product quality: a focus on online reviews and shopping platforms. Humanities and Social Sciences Communications, 10(1), 1–10. https://doi.org/10.1057/s41599-023-02277-7 DOI: https://doi.org/10.1057/s41599-023-02277-7
  74. Ullah, A., Khan, K., Khan, A., & Ullah, S. (2023). Understanding quality of products from customers’ attitude using advanced machine learning methods. Computers, 12(3), 49. https://doi.org/10.3390/computers12030049 DOI: https://doi.org/10.3390/computers12030049
  75. van der Sluis, F. (2025). Wanting information: uncertainty and its reduction through search engagement. Information Processing and Management, 62(2), 103890. https://doi.org/10.1016/j.ipm.2024.103890 DOI: https://doi.org/10.1016/j.ipm.2024.103890
  76. Wu, I. L., Chiu, M. L., & Chen, K. W. (2020). Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. International Journal of Information Management, 52(May 2019), 102099. https://doi.org/10.1016/j.ijinfomgt.2020.102099 DOI: https://doi.org/10.1016/j.ijinfomgt.2020.102099
  77. Yan, M., Kwok, A. P. K., Chan, A. H. S., Zhuang, Y. S., Wen, K., & Zhang, K. C. (2023). An empirical investigation of the impact of influencer live-streaming ads in e-commerce platforms on consumers’ buying impulse. Internet Research, 33(4), 1633–1663. https://doi.org/10.1108/INTR-11-2020-0625 DOI: https://doi.org/10.1108/INTR-11-2020-0625
  78. Zhang, M., & Shi, G. (2022). Consumers’ impulsive buying behavior in online shopping. Computational Intelligence and Neuroscience, 1–8. https://doi.org/https://doi.org/10.1155/2022/6794729 DOI: https://doi.org/10.1155/2022/6794729
  79. Zhang, Y., Zhou, H., & Qin, J. (2022). Research on the effect of uncertain rewards on impulsive purchase intention of blind box products. Frontiers in Behavioral Neuroscience, 16(August), 1–14. https://doi.org/10.3389/fnbeh.2022.946337 DOI: https://doi.org/10.3389/fnbeh.2022.946337
  80. Zhao, H., Yu, M., Fu, S., Cai, Z., Lim, E. T. K., & Tan, C. W. (2023). Disentangling consumers’ negative reactions to impulse buying in the context of in-app purchase: insights from the affect-behavior-cognition model. Electronic Commerce Research and Applications, 62(October), 101328. https://doi.org/10.1016/j.elerap.2023.101328 DOI: https://doi.org/10.1016/j.elerap.2023.101328
  81. Zhao, S., Yang, Q., Im, H., Ye, B., Zeng, Y., Chen, Z., Liu, L., & Huang, D. (2022). The impulsive online shopper: effects of COVID-19 burnout, uncertainty, self-control, and online shopping trust. Future Business Journal, 8(1), 1–15. https://doi.org/10.1186/s43093-022-00174-0 DOI: https://doi.org/10.1186/s43093-022-00174-0
  82. Zhao, S., Ye, B., Wang, W., & Zeng, Y. (2022). The intolerance of uncertainty and “untact” buying behavior: the mediating role of the perceived risk of COVID-19 variants and protection motivation. Frontiers in Psychology, 13(January), 1–10. https://doi.org/10.3389/fpsyg.2022.807331 DOI: https://doi.org/10.3389/fpsyg.2022.807331
  83. Zniva, R., Weitzl, W. J., & Lindmoser, C. (2023). Be constantly different! how to manage influencer authenticity. Electronic Commerce Research, 23(3), 1485–1514. https://doi.org/10.1007/s10660-022-09653-6 DOI: https://doi.org/10.1007/s10660-022-09653-6