Main Article Content

Abstract

In the growing importance of personalized digital services in the banking sector, the integration of personal data through customer data platforms (CDPs) has become a strategic priority. This study explores how personal data privacy influences perceived personalization and operational efficiency in digital banking services, while also investigating the moderating role of local culture. The research is motivated by increasing consumer demands for both personalized services and greater control over personal data. Personal data privacy was conceptualized as a multidimensional construct comprising knowledge, experience, control, willingness to value privacy, and trust. A quantitative method using partial least squares structural equation modeling (PLS-SEM) with 10,000 bootstrapping resamples was employed. The analysis was conducted using SmartPLS version 4.1.1.4, which enables efficient estimation of complex models. Data were collected offline from 200 respondents who are active users of digital banking services from Himbara member banks. The results indicate that personal data privacy has a significant positive effect on both perceived personalization and operational efficiency. Among its dimensions, willingness to value privacy emerged as the most influential. Local culture was found to significantly moderate both relationships, suggesting that cultural context plays a critical role in shaping digital service outcomes. These findings contribute to theory and practice by highlighting the importance of integrating privacy protection and cultural sensitivity in the design of personalized digital banking services.

Keywords

Personal data privacy Perceived personalization Operational efficiency Local culture Behavioral

Article Details

How to Cite
Tabelessy, W., Ralahallo, F. N., Chaniago, A., Kurniawan, S. A., & T, G. A. Y. (2026). Does integrating personal data via CDPs improve banking responsiveness? Moderating influence of local culture. Asian Management and Business Review, 6(1), 225–242. https://doi.org/10.20885/AMBR.vol6.iss1.art14

References

  1. AbdulKareem, A. K., & Oladimeji, K. A. (2024). Cultivating the digital citizen: trust, digital literacy and e-government adoption. Transforming Government: People, Process and Policy, 18(2), 270–286. https://doi.org/10.1108/TG-11-2023-0196 DOI: https://doi.org/10.1108/TG-11-2023-0196
  2. Afifah, N., & Putri, H. N. (2023). Personalization marketing: a literature review approach for elevating customer experience. Management Studies and Entrepreneurship Journal, 4(6), 9469–9480.
  3. Al-khadher, M. A., Ahmed, A., Saraa, N., Salamah, I., Farah, S., & Al-qadri, A. H. (2024). The dimensional validity and reliability of the Italian smartphone addiction inventory of Yemeni university students. Acta Psychologica, 25, Article 104493. https://doi.org/10.1016/j.actpsy.2024.104493 DOI: https://doi.org/10.1016/j.actpsy.2024.104493
  4. Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: guidelines for confirmatory and explanatory IS research. Information and Management, 57(2), Article 103168. https://doi.org/10.1016/j.im.2019.05.003 DOI: https://doi.org/10.1016/j.im.2019.05.003
  5. Blegur, M., & Dyah, C. (2021). Integrating local cultural values to solve the problems of history learning at SMA Negeri Mauta Pantar Tengah-Alor, East Nusa Tenggara. International Journal of Educational Research and Social Sciences, 2(4), 872–876.
  6. Blömker, J., & Albrecht, C. M. (2025). A path from multichannel customer data to real-time personalization: predicting customers’ psychological traits through machine learning. Journal of Retailing and Consumer Services, 87, Article 104349. https://doi.org/10.1016/j.jretconser.2025.104349 DOI: https://doi.org/10.1016/j.jretconser.2025.104349
  7. Bueno, L. A., Sigahi, T. F. A. C., Rampasso, I. S., Leal Filho, W., & Anholon, R. (2024). Impacts of digitization on operational efficiency in the banking sector: thematic analysis and research agenda proposal. International Journal of Information Management Data Insights, 4(1), Article 100230. https://doi.org/10.1016/j.jjimei.2024.100230 DOI: https://doi.org/10.1016/j.jjimei.2024.100230
  8. Butt, A., Imran, F., Helo, P., & Kantola, J. (2024). Strategic design of culture for digital transformation. Long Range Planning, 57(2), 102415. https://doi.org/10.1016/j.lrp.2024.102415 DOI: https://doi.org/10.1016/j.lrp.2024.102415
  9. C.V., S. K., & Agrawal, R. (2024). Developing customer convenience and experience through increased competency and efficiency: a strategic approach to retail operations mastery. Heliyon, 10(16), Article e36395. https://doi.org/10.1016/j.heliyon.2024.e36395 DOI: https://doi.org/10.1016/j.heliyon.2024.e36395
  10. Cheah, J.-H., Magno, F., & Cassia, F. (2024). Reviewing the SmartPLS 4 software: the latest features and enhancements. Journal of Marketing Analytics, 12(1), 97–107. https://doi.org/10.1057/s41270-023-00266-y DOI: https://doi.org/10.1057/s41270-023-00266-y
  11. Chen, S., Tran, K. T., Xia, Z., Waseem, D., Zhang, J. A., & Potdar, B. (2023). The double-edged effects of data privacy practices on customer responses. International Journal of Information Management, 69, Article 102600. https://doi.org/10.1016/j.ijinfomgt.2022.102600 DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102600
  12. De Luca, L. M., Herhausen, D., Troilo, G., & Rossi, A. (2021). How and when do big data investments pay off? the role of marketing affordances and service innovation. Journal of the Academy of Marketing Science, 49(4), 790–810. https://doi.org/10.1007/s11747-020-00739-x DOI: https://doi.org/10.1007/s11747-020-00739-x
  13. Dhagarra, D., Goswami, M., & Kumar, G. (2020). Impact of trust and privacy concerns on technology acceptance in healthcare: an indian perspective. International Journal of Medical Informatics, 141, Article 104164. https://doi.org/10.1016/j.ijmedinf.2020.104164 DOI: https://doi.org/10.1016/j.ijmedinf.2020.104164
  14. Doney, P. M., & Canno, J. P. (1997). An examination of the nature of trust in buyer-seller relations. Journal of Marketing, 61(2), 35–51. https://doi.org/10.2307/1251829 DOI: https://doi.org/10.1177/002224299706100203
  15. Durans, A. de A., & Mainardes, E. W. (2025). Effects of strategic value orientation on personal data privacy, value in use and organizational reputation. International Journal of Bank Marketing, 43(2), 341–367. https://doi.org/10.1108/IJBM-04-2024-0243 DOI: https://doi.org/10.1108/IJBM-04-2024-0243
  16. Escandon, D., Salas, J., & Losada-Otalora, M. (2023). The moderation effect of country culture in the reciprocal relationship between strategic orientations and export performance: a country-level study. Journal of Strategy and Management, 16(4), 733–746. https://doi.org/10.1108/JSMA-05-2022-0089 DOI: https://doi.org/10.1108/JSMA-05-2022-0089
  17. Famoti, O., Ewim, C. P.-M., Omokhoa, H. E., Muyiwa-Ajayi, T. P., & Ezechi, O. N. (2025). Revolutionizing customer experience management through data-driven strategies in financial services. International Journal of Advanced Multidisciplinary Research and Studies, 5(1), 948–957. https://doi.org/10.62225/2583049x.2025.5.1.3748 DOI: https://doi.org/10.62225/2583049X.2025.5.1.3748
  18. Gil, C., Parra-Arnau, J., & Forné, J. (2025). Privacy protection against user profiling through optimal data generalization. Computers and Security, 148, Article 104178. https://doi.org/10.1016/j.cose.2024.104178 DOI: https://doi.org/10.1016/j.cose.2024.104178
  19. Guenther, P., Guenther, M., Ringle, C. M., Zaefarian, G., & Cartwright, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127–142. https://doi.org/10.1016/j.indmarman.2023.03.010 DOI: https://doi.org/10.1016/j.indmarman.2023.03.010
  20. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Sage Publications: USA.
  21. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
  22. Handoyo, S., Suharman, H., Ghani, E. K., & Soedarsono, S. (2023). A business strategy, operational efficiency, ownership structure, and manufacturing performance: The moderating role of market uncertainty and competition intensity and its implication on open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 9(2), Article 100039. https://doi.org/10.1016/j.joitmc.2023.100039 DOI: https://doi.org/10.1016/j.joitmc.2023.100039
  23. Hofstede, G. (2001). Culture’s consequences: comparing values, behaviors, institutions, and organizations across nations. Behaviour Research and Therapy, 41(7) 861-862. https://doi.org/10.1016/S0005-7967(02)00184-5 DOI: https://doi.org/10.1016/S0005-7967(02)00184-5
  24. Iman, N. (2024). The fight for our personal data: analyzing the economics of data and privacy on digital platforms. International Journal of Law and Management, 66(6), 774–791. https://doi.org/10.1108/IJLMA-12-2022-0258 DOI: https://doi.org/10.1108/IJLMA-12-2022-0258
  25. Ioannou, A., Tussyadiah, I., & Lu, Y. (2020). Privacy concerns and disclosure of biometric and behavioral data for travel. International Journal of Information Management, 54, Article 102122. https://doi.org/10.1016/j.ijinfomgt.2020.102122 DOI: https://doi.org/10.1016/j.ijinfomgt.2020.102122
  26. Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2024). Digital economy to improve the culture of industry 4.0: a study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), Article 100083. https://doi.org/10.1016/j.grets.2024.100083 DOI: https://doi.org/10.1016/j.grets.2024.100083
  27. Jian, C., & Dan, D. (2024). The emerging challenges of customer relationship management with customer data platforms (CDP): constraints and perspectives. American Journal of Management Science and Engineering, 9(3), 56–63. https://doi.org/10.11648/j.ajmse.20240903.11 DOI: https://doi.org/10.11648/j.ajmse.20240903.11
  28. Juma’h, A. H., & Alnsour, Y. (2019). The effect of data breaches on company performance. International Journal of Accounting and Information Management, 28(2), 275–301. https://doi.org/10.1108/IJAIM-01-2019-0006 DOI: https://doi.org/10.1108/IJAIM-01-2019-0006
  29. Kagaari, J. R. K. (2011). Performance management practices and managed performance: the moderating influence of organisational culture and climate in public universities in Uganda. Measuring Business Excellence, 15(4), 36–49. https://doi.org/10.1108/13683041111184099 DOI: https://doi.org/10.1108/13683041111184099
  30. Khan, K. B., Jaafar, N. I., & Zakaria, S. B. (2024). The role of collectivist cultural practices in supporting a hybrid payment system among small and medium enterprises (SMEs) in Pakistan. Future Business Journal, 10(1), 1–18. https://doi.org/10.1186/s43093-024-00334-4 DOI: https://doi.org/10.1186/s43093-024-00334-4
  31. Khazanchi, S., Lewis, M. W., & Boyer, K. K. (2007). Innovation-supportive culture: the impact of organizational values on process innovation. Journal of Operations Management, 25(4), 871–884. https://doi.org/10.1016/j.jom.2006.08.003 DOI: https://doi.org/10.1016/j.jom.2006.08.003
  32. Kitsios, F., Giatsidis, I., & Kamariotou, M. (2021). Digital transformation and strategy in the banking sector: evaluating the acceptance rate of e-services. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), Article 204. https://doi.org/10.3390/joitmc7030204 DOI: https://doi.org/10.3390/joitmc7030204
  33. Kona, S. S. (2020). Customer segmentation and personalization in banking services: investigating the use of big data analytics to segment banking customers based on their behavior, demographics, and preferences, and leveraging these insights to personalize banking services and marketing campaigns. International Journal of Science and Research (IJSR), 9(8), 1566–1570. https://dx.doi.org/10.21275/SR24522131706 DOI: https://doi.org/10.21275/SR24522131706
  34. Kumar, D., Phani, B. V., Chilamkurti, N., Saurabh, S., & Ratten, V. (2023). Filling the SME credit gap: a systematic review of blockchain-based SME finance literature. Journal of Trade Science, 11(2-3), 45–72. https://doi.org/10.1108/jts-06-2023-0003 DOI: https://doi.org/10.1108/JTS-06-2023-0003
  35. Lambillotte, L., Magrofuoco, N., Poncin, I., & Vanderdonckt, J. (2022). Enhancing playful customer experience with personalization. Journal of Retailing and Consumer Services, 68, Article 103017. https://doi.org/10.1016/j.jretconser.2022.103017 DOI: https://doi.org/10.1016/j.jretconser.2022.103017
  36. Li, C. (2016). When does web-based personalization really work? the distinction between actual personalization and perceived personalization. Computers in Human Behavior, 54, 25–33. https://doi.org/10.1016/j.chb.2015.07.049 DOI: https://doi.org/10.1016/j.chb.2015.07.049
  37. Luo, J., Xu, J., Aldosari, O., Althubiti, S. A., & Deebani, W. (2022). Design and implementation of an efficient electronic bank management information system based data warehouse and data mining processing. Information Processing and Management, 59(6), Article 103086. https://doi.org/10.1016/j.ipm.2022.103086 DOI: https://doi.org/10.1016/j.ipm.2022.103086
  38. Martínez-Navalón, J. G., Fernández-Fernández, M., & Alberto, F. P. (2023). Does privacy and ease of use influence user trust in digital banking applications in Spain and Portugal? International Entrepreneurship and Management Journal, 19(2), 781–803. https://doi.org/10.1007/s11365-023-00839-4 DOI: https://doi.org/10.1007/s11365-023-00839-4
  39. Masriat, C. A., Ngoranubun, W., & Kandunmas, F. (2024). Solidaritas sosial dalam membangun moderasi beragama di maluku (sebuah alternatif untuk membangun moderasi beragama). Jurnal Ilmiah Muqoddimah : Jurnal Ilmu Sosial, Politik, dan Humaniora, 8(4), 1837-1846. https://doi.org/10.31604/jim.v8i4.2024.1837-1846 DOI: https://doi.org/10.31604/jim.v8i4.2024.1837-1846
  40. Mayer, R. C., & Davis, J. H. (1995). An integrative model of organizational trust. Academu of Management Review, 20(3), 709–734. https://doi.org/10.2307/258792 DOI: https://doi.org/10.2307/258792
  41. Oesterreich, T. D., Anton, E., Hettler, F. M., & Teuteberg, F. (2024). What drives individuals’ trusting intention in digital platforms? an exploratory meta-analysis. In Management Review Quarterly, 75, 3615-3667. https://doi.org/10.1007/s11301-024-00477-2 DOI: https://doi.org/10.1007/s11301-024-00477-2
  42. Oyuga, S., Ochieng, E. G., & Ngene, G. (2025). Moderating influence of cultural values on the relationship between governance and risk perception in large-scale infrastructure development projects.International Journal of Productivity and Performance Management, 74(7), 2457-2382. https://doi.org/10.1108/IJPPM-04-2024-0244 DOI: https://doi.org/10.1108/IJPPM-04-2024-0244
  43. Raja, S., Soundararajan, V., & Parayitam, S. (2024). Community support and benefits, culture and hedonism as moderators in the relationship between brand heritage, tourist satisfaction and revisit intention. Journal of Hospitality and Tourism Insights, 7(5), 2525–2545. https://doi.org/10.1108/JHTI-05-2023-0324 DOI: https://doi.org/10.1108/JHTI-05-2023-0324
  44. Rasoolimanesh, S. M., Seyfi, S., Hall, C. M., & Hatamifar, P. (2021). Understanding memorable tourism experiences and behavioural intentions of heritage tourists. Journal of Destination Marketing and Management, 21, Article 100621. https://doi.org/10.1016/j.jdmm.2021.100621 DOI: https://doi.org/10.1016/j.jdmm.2021.100621
  45. Rodrigues, A. R. D., Ferreira, F. A. F., Teixeira, F. J. C. S. N., & Zopounidis, C. (2022). Artificial intelligence, digital transformation and cybersecurity in the banking sector: a multi-stakeholder cognition-driven framework. Research in International Business and Finance, 60, Article 101616. https://doi.org/10.1016/j.ribaf.2022.101616 DOI: https://doi.org/10.1016/j.ribaf.2022.101616
  46. Roscoe, J. T. (1975). Fundamental Research Statistics for the Behavioral Sciences (2nd ed.). Holt, Rinehart & Winston: USA.
  47. Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., & Ringle, C. M. (2022). Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychology and Marketing, 39(5), 1035–1064. https://doi.org/10.1002/mar.21640 DOI: https://doi.org/10.1002/mar.21640
  48. Schäfer, F., Gebauer, H., Gröger, C., Gassmann, O., & Wortmann, F. (2023). Data-driven business and data privacy: challenges and measures for product-based companies. Business Horizons, 66(4), 493–504. https://doi.org/10.1016/j.bushor.2022.10.002 DOI: https://doi.org/10.1016/j.bushor.2022.10.002
  49. Shah, T., & Chase, J. (2025). The role of customer data platforms (CDPS) in driving hyper-personalization in fintech. International Research Journal of Engineering and Technology, 12(4), 831–840.
  50. Shela, V., Ramayah, T., Aravindan, K. L., Ahmad, N. H., & Alzahrani, A. I. (2023). Run! this road has no ending! a systematic review of PLS-SEM application in strategic management research among developing nations. Heliyon, 9(12), Article e22476. https://doi.org/10.1016/j.heliyon.2023.e22476 DOI: https://doi.org/10.1016/j.heliyon.2023.e22476
  51. Shin, W., Kim, E., & Huh, J. (2025). Young adults’ acceptance of data-driven personalized advertising: privacy and trust equilibrium (PATE) model. Young Consumers, 26(2), 189–206. https://doi.org/10.1108/YC-06-2024-2105 DOI: https://doi.org/10.1108/YC-06-2024-2105
  52. Spiekermann, S., Acquisti, A., Böhme, R., & Hui, K. L. (2015). The challenges of personal data markets and privacy. Electronic Markets, 25(2), 161–167. https://doi.org/10.1007/s12525-015-0191-0 DOI: https://doi.org/10.1007/s12525-015-0191-0
  53. Tjosvold, D., Law, K. S., & Sun, H. F. (2003). Collectivistic and individualistic values : their effects on group dynamics and productivity in China. Group Decision and Negotiation, 12, 243–263. https://doi.org/10.1023/A:1023383200180 DOI: https://doi.org/10.1023/A:1023383200180
  54. Tran, T. P., Lin, C. W., Baalbaki, S., & Guzmán, F. (2020). How personalized advertising affects equity of brands advertised on Facebook? a mediation mechanism. Journal of Business Research, 120, 1–15. https://doi.org/10.1016/j.jbusres.2020.06.027 DOI: https://doi.org/10.1016/j.jbusres.2020.06.027
  55. Van Buggenhout, N., Van den Broeck, W., Van Zeeland, I., & Pierson, J. (2023). Personal data and personalisation in media: experts’ perceptions of value, benefits, and risks. Digital Policy, Regulation and Governance , 25(3), 305–324. https://doi.org/10.1108/DPRG-07-2022-0076 DOI: https://doi.org/10.1108/DPRG-07-2022-0076
  56. Wakano, A. (2019). Nilai-nilai pendidikan multikultural dalam kearifan lokal masyarakat Maluku. Al-Iltizam: Jurnal Pendidikan Agama Islam, 4(2), 26–43. https://doi.org/10.33477/alt.v4i2.1006 DOI: https://doi.org/10.33477/alt.v4i2.1006
  57. Wang, E. S. T., & Lin, R. L. (2017). Perceived quality factors of location-based apps on trust, perceived privacy risk, and continuous usage intention. Behaviour and Information Technology, 36(1), 2–10. https://doi.org/10.1080/0144929X.2016.1143033 DOI: https://doi.org/10.1080/0144929X.2016.1143033
  58. Wang, S., Asif, M., Shahzad, M. F., & Ashfaq, M. (2024). Data privacy and cybersecurity challenges in the digital transformation of the banking sector. Computers and Security, 147, Article 104051. https://doi.org/10.1016/j.cose.2024.104051 DOI: https://doi.org/10.1016/j.cose.2024.104051
  59. Zhang, L., Zaki, H. O., Hashim, S., & Omar, N. A. (2025). The role of personalization and emotional attachment on privacy calculus: an empirical study of intelligent voice assistant. Asia Pacific Journal of Marketing and Logistics. https://doi.org/10.1108/APJML-10-2024-1578. DOI: https://doi.org/10.1108/APJML-10-2024-1578