Main Article Content
Abstract
This mini review discusses the roles of intensification process in biodiesel production. Due to the Twelve Principles of Green Chemistry as a foundation for sustainability, the shorter time and efficient energy consumption highlighted the use of microwave and ultrasound irradiation for increasing conversion of biodiesel.The principles and some examples for the process are exhibited. It can be summarized that the intensifications are important innovations, but some optimization and life cycle analysis are required in applicable scales.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- A. Demirbas, Progress and recent trends in biodiesel fuels, Energy Convers. Manag.,50 (2009) 14–34.
- R. C. A. Lago, Castor and jatropha oils: Production strategies – A review, OCL - Ol. Corps Gras Lipides, 16(4) (2009) 241–247.
- A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Review 16(4)(2012) 2070–2093.
- S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renewable and Sustainable Energy Review 16(1)(2012) 143–169.
- N. Ibrahim, S. K. Kamarudin, and L. J. Minggu, Biofuel from biomass via photo-electrochemical reactions: An overview, Journal of Power Sources, 259(2014) 33–42.
- I. C. Emeji, A. S. A. Member, J. Kalala, and A. S. Abdulkareem, Optimization and Characterization of Biofuel from Waste Cooking Oil, in Proceedings of the World Congress on Engineering and Computer Science 2015, (2015) 2–5.
- J. H. Clark, Macquarrie, and T. . Graedel, Green Chemistry and Sustainable Development, in Handbook Of Green Chemistry And Technology, Wiley publisher, 2007.
- R. L. Lankey and P. T. Anastas, Advancing Sustainability through Green Chemistry and Engineering. American Chemical Society, 2002.
- C. H. Zhou, An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis,” Applied Clay Science 53(2)(2011) 87–96.
- F. Jamil., Current scenario of catalysts for biodiesel production: A critical review, Review in Chemical Engineering 34(2) (2018) 267–297.
- S. Saka, Y. Isayama, Z. Ilham, and X. Jiayu, New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol, Fuel 89(7) (2010) 71442–1446.
- A. Yeboah, S. Ying, Y. Jiannong, L.Y. Xie, A.AMoaniamaa, A. Agyenim, B. Miao, C. Yin, Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties, Food and Science Technology 26(2020).
- A. Koh, Two-step biodiesel production using supercritical methanol and ethanol, 2011.
- K. Srinivasan, J. C. Manayil, and C. A. Antonyraj, Heterogeneous Catalysis for Perfumery Chemicals. Elsevier Inc., 2016.
- A. Tiwari, V. M. Rajesh, and S. Yadav, Biodiesel production in micro-reactors: A review, Energy for Sustainable Development 43(2018) 143–161.
- M. Emura and H. Matsuda, A green and sustainable approach: Celebrating the 30th anniversary of the asymmetric l-menthol process, Chemistry and Biodiversity 11(2014) 1688–1699.
- P. T. Anastas and M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry., Account of Chemical. Research 35(9)(2002) 686–694.
- S. S. Shams, L. S. Zhang, R. Hu, R. Zhang, and J. Zhu, Synthesis of graphene from biomass: A green chemistry approach, Material Letter 161(2015) 476–479.
- B. a. Roberts and C. R. Strauss, Toward rapid, ‘green’, predictable microwave-assisted synthesis, Account of Chemical Research 38(2005) 653–661.
- J. Jacob, Microwave Assisted Reactions in Organic Chemistry: A Review of Recent Advances, International Journal of Chemistry 4(2012) 29.
- J. Jacob, Microwave Assisted Reactions in Organic Chemistry: A Review of Recent Advances, International Journal of Chemistry 4(2012) 29.
- H. Berthold, T. Schotten, and H. Hönig, Transfer hydrogenation in ionic liquids under microwave irradiation, Synthesis 11(2002) 1607–1610.
- I. Lavilla, V. Romero, I. Costas, and C. Bendicho, Greener derivatization in analytical chemistry, Trends in Analytical Chemistry 61(2014) 1–10.
- V. Gude, P. Patil, E. Martinez-Guerra, S. Deng, and N. Nirmalakhandan, Microwave energy potential for biodiesel production, Sustainable Chemical Process 1(2013) 1-5.
- C. H. Zhou, “An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis, Applied Clay Science 53(2011) 87–96.
- B. V. Badami, “Concept of green chemistry, Resonance 13(2008) 1041–1048.
- R. C. Fierascu, A. Ortan, S. M. Avramescu, and I. Fierascu, Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications, Molecules 24 (2019) 1–35, 2019.
- T. U. Eindhoven, Microwave heating in fine chemical applications: role of heterogeneity, Research Thesis, 2009.
- P. T. A. J. B. Zimmerman, The Twelve Principles of Green Engineering as a Foundation for Sustainability, Sustainability Science and Engineering 1(2006) 11-32.
- P. T. A. J. B. Zimmerman, The Twelve Principles of Green Engineering as a Foundation for Sustainability, Sustainability Science and Engineering 1(2006) 11-32.
- M. Zare, B. Ghobadian, and G. Fayyazi, Ebrahim., Najafi, Microwave-assisted Biodiesel Fuel Production from Waste Cooking Oil, International Journal of Agriculture and Crop Sciences (2013) 1314–1317.
- G. M. Hincapié, S. Valange, J. Barrault, J. A. Moreno, and D. P. López, Effect of microwave-assisted system on transesterification of castor oil with ethanol, Universitas Scientiarum 19(2014) 193–200.
- T. Lieu, S. Yusup, and M. Moniruzzaman, Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil, Bioresource Technology 211(2016) 248–256.
- I. Fatimah, A. Taushiyah, F. B. Najah, and U. Azmi, ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil, IOP Conference Series: Materials Science and Engineering 349(2018) 012027.
- J. Cheng, Y. Qiu, R. Huang, W. Yang, J. Zhou, and K. Cen, Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst, Bioresource Technology 221(2016) 344–349.
- N. A. Ibrahim and M. A. A. Zaini, Microwave-assisted solvent extraction of castor oil from castor seeds, Chinese Journal of Chemical Engineering 26(2018) 2516–2522.
- I. Fatimah, G. R. Aulia, W. Puspitasari, R. Nurillahi, L. Sopia, and R. Herianto, Microwave-synthesized hydroxyapatite from paddy field snail (Pila ampullacea) shell for adsorption of bichromate ion, Sustainable Environment Research 28(2018) 462–471.
- G. Nagendrappa, Organic synthesis using clay and clay-supported catalysts, Applied Clay Science 53(2011) 106–138.
- A. Buasri, T. Inkaew, and L. Kodephun, Natural Hydroxyapatite ( NHAp ) Derived from Pork Bone as a Renewable Catalyst for Biodiesel Production via Microwave Irradiation, Key Engineering Materials 659(2015) 216–220.
- S. A. El Sherbiny, A. A. Refaat, and S. T. El Sheltawy, Production of biodiesel using the microwave technique, Journal of Advanced Research 1(2010) 309–314.
- B. L. A. Prabhavathi Devi, M. S. L. Karuna, K. Narasimha Rao, P. S. Saiprasad, and R. B. N. Prasad, Microwave-Assisted Catalytic Transfer Hydrogenation of Safflower Oil, Journal of the American Oil Chemists' Society 80(2003) 1003–1005.
- H. Venkatesh Kamath, I. Regupathi, and M. B. Saidutta, Optimization of two step karanja biodiesel synthesis under microwave irradiation, Fuel Processing Technology 92(2011) 100–105.
- H. Mazaheri, H.. Ong, Z. Amini,H.H. Masjuki, M. Mofijur, C. H. Su, I.A. Badruddin T.M. Y. Khan, An overview of biodiesel production via calcium oxide based catalysts: Current state and perspective, Energies 14(2021). 1–23.
- S. Moradi, A. Fazlali, and H. Hamedi, Microwave-assisted hydro-distillation of essential oil from rosemary: Comparison with traditional distillation, Avicenna J. Med. Biotechnol., 10(2018) 22–28.
- N. A. Ibrahim and M. A. A. Zaini, Solvent selection in microwave assisted extraction of castor oil, Chemical Engineering Transactions 56(2017) 865–870.
- A. T. Quitain, S. Katoh, and M. Goto, Microwave-Assisted Synthesis of Biofuels, 1999, 2006.
- K. S. Chen, Y. C. Lin, K. H. Hsu, and H. K. Wang, Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system, Energy 38(2020) 151–156.
- N. Azcan and O. Yilmaz, Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation, Fuel 104(2012) 614–619.
- M. Salaheldeen, A. A. Mariod, M. K. Aroua, S. M. A. Rahman, M. E. M. Soudagar, and I. M. R. Fattah, Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production, Catalyst (2020) 1–37, 2021.
- C. H. Zhou, H. Zhao, D. S. Tong, L. M. Wu, and W. H. Yu, Recent advances in catalytic conversion of glycerol, Catalysis Reviews: Science and Engineering 55(2013) 369–453.
- P. Intarapong, S. Iangthanarat, and A. Luengnaruemitchai, Biodiesel Production from Palm Oil Using Potassium Hydroxide Loaded on ZrO 2 Catalyst in a Batch Reactor, Chiang Mai Journal of Science 41(2014) 2014.
- F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrasonic Sonochemistry 34(2016) 540–560.
- P. D. Patil, Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes, Journal of Environmental Protection 3(2012) 107–113.
- G. Ozturk, A. B. Kafadar, M. Z. Duz, A. Saydut, and C. Hamamci, Microwave assisted transesterification of maize (Zea mays L.) oil as a biodiesel fuel, Energy Exploration and Exploitation 28(2010) 47–58.
- G. M. Hincapié, S. Valange, J. Barrault, J. A. Moreno, and D. P. López, Effect of microwave-assisted system on transesterification of castor oil with ethanol, Universitas Scientiarum 19(2014) 193–200.
- E. L. Dall’Oglio, P. T. De Sousa, P. T. De Jesus Oliveira, L. G. De Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation, Química Nova 37(2014) 411–417.
- H. Yuan, B. Yang, H. Zhang, and X. Zhou, Synthesis of Biodiesel Using Castor Oil under Microwave Radiation, International Journal of Chemical Reactor Engineering 9(2012) 2562.
- C. H. Lin, Y. T. Chang, M. C. Lai, T. Y. Chiou, and C. Sen Liao, Continuous biodiesel production from waste soybean oil using a nano-fe3o4 microwave catalysis, Processes ((2012) 1–10.
- S. Chellappan, K. Aparna, C. Chingakham, V. Sajith, and V. Nair, Microwave assisted biodiesel production using a novel BrØnsted acid catalyst based on nanomagnetic biocomposite, Fuel 246(2019) 268–276.
- R. Kumar and A. K. Sethy, Microwave Assisted Energy Efficient Biodiesel Production from Crude Pongamia pinnata (L.) Oil Using Homogeneous Catalyst, Journal of Forest and Environmental Science 31(2015) 1–6.
- W. Liu, X. Liu, W. Chen, H. Chen, C. Liu, R. Qu, Q. Xu, Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production, Energy Conversion and Management 76(2013) 1009–1014.
- P. Khemthong, C. Luadthong, W.Nualpaeng, P.Changsuwan, P.Tongprem, N.Viriya-empikul, K.Faungnawakij, Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production, Catalyst Today 190(2012) 112–116.
- M. Koberg, R. Abu-Much, and A. Gedanken, Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst, Bioresource Technology 102(2010) 1073–1078.
- A. S. Silitonga, A.H.Shamsuddin, T.M.I.Mahlia, J. Milano, F.Kusumo, J. Siswantoro, S.Dharma, A.H.Sebayang, H.H.Masjuki, H. C. Ong, Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization, Renewable Energy 146(2020) 1278–1291.
- I. Fatimah and S. P. Yudha, KF-Modified Natural Halloysite as Green Catalyst in Microwave Assisted Biodiesel Conversion, Energy Procedia 105 (2017) 1796-1805.
- E. Martinez-Guerra and V. G. Gude, Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations, Energy Conversion and Management 88(2014) 633–640.
- S. Nomanbhay and M. Y. Ong, A Review of Microwave-Assisted Reactions for Biodiesel Production, Bioengineering 4(2017) 57-65.
- V. G. Gude, Synergism of microwaves and ultrasound for advanced biorefineries, Resource-Efficient Technologies 1(2015) 116–125.
- K. Somnuk, P. Smithmaitrie, and G. Prateepchaikul, Feasibility of Using Ultrasound-Assisted Biodiesel Production from Degummed-Deacidi fi ed Mixed Crude Palm Oil Using Small-Scale Circulation, 669(2012) 662–669.
- J. M. Encinar, A. Pardal, N. Sánchez, and S. Nogales, Biodiesel by transesterification of rapeseed oil using ultrasound: A kinetic study of base-catalysed reactions, Energies 11(2018) 11092229.
- O. Babajide, L. Petrik, B. Amigun, and F. Ameer, Low-cost feedstock conversion to biodiesel via ultrasound technology, Energies 3(2010) 1691–1703.
- F. F. P. Santos, S. Rodrigues, and F. A. N. Fernandes, Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis, Fuel Processing Technology 90(2009) 312–316.
- D. C. Boffito, S. Mansi, J.-M. Leveque, C. Pirola, C. L. Bianchi, and G. S. Patience, Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors, ACS Sustainable Chemistry and Engineering 1(2013) 1432–1439.
- J. Luo, Z. Fang, and R. L. Smith, Ultrasound-enhanced conversion of biomass to biofuels, Progress in Energy and Combustion Science 41(2015) 56–93.
- A. Cancela, R. Maceiras, V. Alfonsin, and A. Sanchez, Transesterification of waste frying oil under ultrasonic irradiation, European Journal of Sustainable Development 4(2015) 401-406.
- V. L. Gole and P. R. Gogate, Intensification od Synthesis of Biodiesel from Nonedible Oils Using Sonochemical Reactors, Industrial and engineering Chemistry Research 11(51) 11866-11874.
References
A. Demirbas, Progress and recent trends in biodiesel fuels, Energy Convers. Manag.,50 (2009) 14–34.
R. C. A. Lago, Castor and jatropha oils: Production strategies – A review, OCL - Ol. Corps Gras Lipides, 16(4) (2009) 241–247.
A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Review 16(4)(2012) 2070–2093.
S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renewable and Sustainable Energy Review 16(1)(2012) 143–169.
N. Ibrahim, S. K. Kamarudin, and L. J. Minggu, Biofuel from biomass via photo-electrochemical reactions: An overview, Journal of Power Sources, 259(2014) 33–42.
I. C. Emeji, A. S. A. Member, J. Kalala, and A. S. Abdulkareem, Optimization and Characterization of Biofuel from Waste Cooking Oil, in Proceedings of the World Congress on Engineering and Computer Science 2015, (2015) 2–5.
J. H. Clark, Macquarrie, and T. . Graedel, Green Chemistry and Sustainable Development, in Handbook Of Green Chemistry And Technology, Wiley publisher, 2007.
R. L. Lankey and P. T. Anastas, Advancing Sustainability through Green Chemistry and Engineering. American Chemical Society, 2002.
C. H. Zhou, An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis,” Applied Clay Science 53(2)(2011) 87–96.
F. Jamil., Current scenario of catalysts for biodiesel production: A critical review, Review in Chemical Engineering 34(2) (2018) 267–297.
S. Saka, Y. Isayama, Z. Ilham, and X. Jiayu, New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol, Fuel 89(7) (2010) 71442–1446.
A. Yeboah, S. Ying, Y. Jiannong, L.Y. Xie, A.AMoaniamaa, A. Agyenim, B. Miao, C. Yin, Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties, Food and Science Technology 26(2020).
A. Koh, Two-step biodiesel production using supercritical methanol and ethanol, 2011.
K. Srinivasan, J. C. Manayil, and C. A. Antonyraj, Heterogeneous Catalysis for Perfumery Chemicals. Elsevier Inc., 2016.
A. Tiwari, V. M. Rajesh, and S. Yadav, Biodiesel production in micro-reactors: A review, Energy for Sustainable Development 43(2018) 143–161.
M. Emura and H. Matsuda, A green and sustainable approach: Celebrating the 30th anniversary of the asymmetric l-menthol process, Chemistry and Biodiversity 11(2014) 1688–1699.
P. T. Anastas and M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry., Account of Chemical. Research 35(9)(2002) 686–694.
S. S. Shams, L. S. Zhang, R. Hu, R. Zhang, and J. Zhu, Synthesis of graphene from biomass: A green chemistry approach, Material Letter 161(2015) 476–479.
B. a. Roberts and C. R. Strauss, Toward rapid, ‘green’, predictable microwave-assisted synthesis, Account of Chemical Research 38(2005) 653–661.
J. Jacob, Microwave Assisted Reactions in Organic Chemistry: A Review of Recent Advances, International Journal of Chemistry 4(2012) 29.
J. Jacob, Microwave Assisted Reactions in Organic Chemistry: A Review of Recent Advances, International Journal of Chemistry 4(2012) 29.
H. Berthold, T. Schotten, and H. Hönig, Transfer hydrogenation in ionic liquids under microwave irradiation, Synthesis 11(2002) 1607–1610.
I. Lavilla, V. Romero, I. Costas, and C. Bendicho, Greener derivatization in analytical chemistry, Trends in Analytical Chemistry 61(2014) 1–10.
V. Gude, P. Patil, E. Martinez-Guerra, S. Deng, and N. Nirmalakhandan, Microwave energy potential for biodiesel production, Sustainable Chemical Process 1(2013) 1-5.
C. H. Zhou, “An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis, Applied Clay Science 53(2011) 87–96.
B. V. Badami, “Concept of green chemistry, Resonance 13(2008) 1041–1048.
R. C. Fierascu, A. Ortan, S. M. Avramescu, and I. Fierascu, Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications, Molecules 24 (2019) 1–35, 2019.
T. U. Eindhoven, Microwave heating in fine chemical applications: role of heterogeneity, Research Thesis, 2009.
P. T. A. J. B. Zimmerman, The Twelve Principles of Green Engineering as a Foundation for Sustainability, Sustainability Science and Engineering 1(2006) 11-32.
P. T. A. J. B. Zimmerman, The Twelve Principles of Green Engineering as a Foundation for Sustainability, Sustainability Science and Engineering 1(2006) 11-32.
M. Zare, B. Ghobadian, and G. Fayyazi, Ebrahim., Najafi, Microwave-assisted Biodiesel Fuel Production from Waste Cooking Oil, International Journal of Agriculture and Crop Sciences (2013) 1314–1317.
G. M. Hincapié, S. Valange, J. Barrault, J. A. Moreno, and D. P. López, Effect of microwave-assisted system on transesterification of castor oil with ethanol, Universitas Scientiarum 19(2014) 193–200.
T. Lieu, S. Yusup, and M. Moniruzzaman, Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil, Bioresource Technology 211(2016) 248–256.
I. Fatimah, A. Taushiyah, F. B. Najah, and U. Azmi, ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil, IOP Conference Series: Materials Science and Engineering 349(2018) 012027.
J. Cheng, Y. Qiu, R. Huang, W. Yang, J. Zhou, and K. Cen, Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst, Bioresource Technology 221(2016) 344–349.
N. A. Ibrahim and M. A. A. Zaini, Microwave-assisted solvent extraction of castor oil from castor seeds, Chinese Journal of Chemical Engineering 26(2018) 2516–2522.
I. Fatimah, G. R. Aulia, W. Puspitasari, R. Nurillahi, L. Sopia, and R. Herianto, Microwave-synthesized hydroxyapatite from paddy field snail (Pila ampullacea) shell for adsorption of bichromate ion, Sustainable Environment Research 28(2018) 462–471.
G. Nagendrappa, Organic synthesis using clay and clay-supported catalysts, Applied Clay Science 53(2011) 106–138.
A. Buasri, T. Inkaew, and L. Kodephun, Natural Hydroxyapatite ( NHAp ) Derived from Pork Bone as a Renewable Catalyst for Biodiesel Production via Microwave Irradiation, Key Engineering Materials 659(2015) 216–220.
S. A. El Sherbiny, A. A. Refaat, and S. T. El Sheltawy, Production of biodiesel using the microwave technique, Journal of Advanced Research 1(2010) 309–314.
B. L. A. Prabhavathi Devi, M. S. L. Karuna, K. Narasimha Rao, P. S. Saiprasad, and R. B. N. Prasad, Microwave-Assisted Catalytic Transfer Hydrogenation of Safflower Oil, Journal of the American Oil Chemists' Society 80(2003) 1003–1005.
H. Venkatesh Kamath, I. Regupathi, and M. B. Saidutta, Optimization of two step karanja biodiesel synthesis under microwave irradiation, Fuel Processing Technology 92(2011) 100–105.
H. Mazaheri, H.. Ong, Z. Amini,H.H. Masjuki, M. Mofijur, C. H. Su, I.A. Badruddin T.M. Y. Khan, An overview of biodiesel production via calcium oxide based catalysts: Current state and perspective, Energies 14(2021). 1–23.
S. Moradi, A. Fazlali, and H. Hamedi, Microwave-assisted hydro-distillation of essential oil from rosemary: Comparison with traditional distillation, Avicenna J. Med. Biotechnol., 10(2018) 22–28.
N. A. Ibrahim and M. A. A. Zaini, Solvent selection in microwave assisted extraction of castor oil, Chemical Engineering Transactions 56(2017) 865–870.
A. T. Quitain, S. Katoh, and M. Goto, Microwave-Assisted Synthesis of Biofuels, 1999, 2006.
K. S. Chen, Y. C. Lin, K. H. Hsu, and H. K. Wang, Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system, Energy 38(2020) 151–156.
N. Azcan and O. Yilmaz, Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation, Fuel 104(2012) 614–619.
M. Salaheldeen, A. A. Mariod, M. K. Aroua, S. M. A. Rahman, M. E. M. Soudagar, and I. M. R. Fattah, Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production, Catalyst (2020) 1–37, 2021.
C. H. Zhou, H. Zhao, D. S. Tong, L. M. Wu, and W. H. Yu, Recent advances in catalytic conversion of glycerol, Catalysis Reviews: Science and Engineering 55(2013) 369–453.
P. Intarapong, S. Iangthanarat, and A. Luengnaruemitchai, Biodiesel Production from Palm Oil Using Potassium Hydroxide Loaded on ZrO 2 Catalyst in a Batch Reactor, Chiang Mai Journal of Science 41(2014) 2014.
F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrasonic Sonochemistry 34(2016) 540–560.
P. D. Patil, Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes, Journal of Environmental Protection 3(2012) 107–113.
G. Ozturk, A. B. Kafadar, M. Z. Duz, A. Saydut, and C. Hamamci, Microwave assisted transesterification of maize (Zea mays L.) oil as a biodiesel fuel, Energy Exploration and Exploitation 28(2010) 47–58.
G. M. Hincapié, S. Valange, J. Barrault, J. A. Moreno, and D. P. López, Effect of microwave-assisted system on transesterification of castor oil with ethanol, Universitas Scientiarum 19(2014) 193–200.
E. L. Dall’Oglio, P. T. De Sousa, P. T. De Jesus Oliveira, L. G. De Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation, Química Nova 37(2014) 411–417.
H. Yuan, B. Yang, H. Zhang, and X. Zhou, Synthesis of Biodiesel Using Castor Oil under Microwave Radiation, International Journal of Chemical Reactor Engineering 9(2012) 2562.
C. H. Lin, Y. T. Chang, M. C. Lai, T. Y. Chiou, and C. Sen Liao, Continuous biodiesel production from waste soybean oil using a nano-fe3o4 microwave catalysis, Processes ((2012) 1–10.
S. Chellappan, K. Aparna, C. Chingakham, V. Sajith, and V. Nair, Microwave assisted biodiesel production using a novel BrØnsted acid catalyst based on nanomagnetic biocomposite, Fuel 246(2019) 268–276.
R. Kumar and A. K. Sethy, Microwave Assisted Energy Efficient Biodiesel Production from Crude Pongamia pinnata (L.) Oil Using Homogeneous Catalyst, Journal of Forest and Environmental Science 31(2015) 1–6.
W. Liu, X. Liu, W. Chen, H. Chen, C. Liu, R. Qu, Q. Xu, Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production, Energy Conversion and Management 76(2013) 1009–1014.
P. Khemthong, C. Luadthong, W.Nualpaeng, P.Changsuwan, P.Tongprem, N.Viriya-empikul, K.Faungnawakij, Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production, Catalyst Today 190(2012) 112–116.
M. Koberg, R. Abu-Much, and A. Gedanken, Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst, Bioresource Technology 102(2010) 1073–1078.
A. S. Silitonga, A.H.Shamsuddin, T.M.I.Mahlia, J. Milano, F.Kusumo, J. Siswantoro, S.Dharma, A.H.Sebayang, H.H.Masjuki, H. C. Ong, Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization, Renewable Energy 146(2020) 1278–1291.
I. Fatimah and S. P. Yudha, KF-Modified Natural Halloysite as Green Catalyst in Microwave Assisted Biodiesel Conversion, Energy Procedia 105 (2017) 1796-1805.
E. Martinez-Guerra and V. G. Gude, Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations, Energy Conversion and Management 88(2014) 633–640.
S. Nomanbhay and M. Y. Ong, A Review of Microwave-Assisted Reactions for Biodiesel Production, Bioengineering 4(2017) 57-65.
V. G. Gude, Synergism of microwaves and ultrasound for advanced biorefineries, Resource-Efficient Technologies 1(2015) 116–125.
K. Somnuk, P. Smithmaitrie, and G. Prateepchaikul, Feasibility of Using Ultrasound-Assisted Biodiesel Production from Degummed-Deacidi fi ed Mixed Crude Palm Oil Using Small-Scale Circulation, 669(2012) 662–669.
J. M. Encinar, A. Pardal, N. Sánchez, and S. Nogales, Biodiesel by transesterification of rapeseed oil using ultrasound: A kinetic study of base-catalysed reactions, Energies 11(2018) 11092229.
O. Babajide, L. Petrik, B. Amigun, and F. Ameer, Low-cost feedstock conversion to biodiesel via ultrasound technology, Energies 3(2010) 1691–1703.
F. F. P. Santos, S. Rodrigues, and F. A. N. Fernandes, Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis, Fuel Processing Technology 90(2009) 312–316.
D. C. Boffito, S. Mansi, J.-M. Leveque, C. Pirola, C. L. Bianchi, and G. S. Patience, Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors, ACS Sustainable Chemistry and Engineering 1(2013) 1432–1439.
J. Luo, Z. Fang, and R. L. Smith, Ultrasound-enhanced conversion of biomass to biofuels, Progress in Energy and Combustion Science 41(2015) 56–93.
A. Cancela, R. Maceiras, V. Alfonsin, and A. Sanchez, Transesterification of waste frying oil under ultrasonic irradiation, European Journal of Sustainable Development 4(2015) 401-406.
V. L. Gole and P. R. Gogate, Intensification od Synthesis of Biodiesel from Nonedible Oils Using Sonochemical Reactors, Industrial and engineering Chemistry Research 11(51) 11866-11874.