Main Article Content
Abstract
This study evaluates seismic site amplification in Yogyakarta using one-dimensional (1D) nonlinear site response analysis. Subsurface conditions were characterized using borehole and Standard Penetration Test (SPT) data from four different locations. Ground motion records were selected and matched to the seismic hazard target spectrum at the bedrock level in Yogyakarta. The nonlinear site response analysis was then used to propagate the seismic waves to the ground surface using the DEEPSOIL program. The results show de-amplification at short periods (T < 0.5 s) and amplification at longer periods (T > 1 s), The highest amplification is observed at T = 0.15 s, with an average factor of 3.47. A comparison with the Indonesian seismic design code SNI 1726:2019, which shows that the code provides more conservative estimates than the site-specific analysis in this study. The analysis also shows that lower input motion intensity at bedrock (PGA = 0.02g) leads to higher amplification, while higher PGA (up to 0.72g) results in reduced response. This study highlights the need for site-specific analysis and consideration of input motion variability.
Keywords
Article Details
Copyright (c) 2025 MUHAMMAD IRFAN MARASABESSY, Elvis Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Under the following term:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
- Afacan, K. B., Brandenberg, S. J., & Stewart, J. P. (2014). Centrifuge Modeling Studies of Site Response in Soft Clay over Wide Strain Range. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 1–13. https://doi.org/10.1061/(asce)gt.1943-5606.0001014
- Darendeli, M. . (2001). Development of A New Family of Normalized Modulus Reduction and Material Damping Curves.
- Delfebriyadi, Irsyam, M., Hutapea, B. M., Imran, I., & Asrurifak, M. (2019). Determination of site amplification deep soil layers using 1-d site response analysis (Case study: Jakarta city, Indonesia). Journal of Engineering and Technological Sciences, 51(6), 824–838. https://doi.org/10.5614/j.eng.technol.sci.2019.51.6.6
- Groholski, D. R., Hashash, Y. M. A., Kim, B., Musgrove, M., Harmon, J., & Stewart, J. P. (2016). Simplified Model for Small-Strain Nonlinearity and Strength in 1D Seismic Site Response Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 142(9). https://doi.org/10.1061/(asce)gt.1943-5606.0001496
- Guerreiro, P., Kontoe, S., & Taborda, D. (2012). Comparative Study Of Stiffness Reduction And Damping Curves. 2–11.
- Hashash, Y. M. A., Musgrove, M., Harmon, J., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D. R., Phillips, C. A., & Park, D. (2020). Deepsoil 7. 1–170.
- Hashash, Y. M. a, & Groholski, D. R. (2010). Recent advances in non-linear site response analysis. Fifth Interantional Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss, 29(6), 1–22. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Remarks+on+site+response+analysis+by+using+Plaxis+dynamic+module#0
- Indonesian Standard Code. (2019). SNI 1726:2019 - Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung. In Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (Issue 8, p. 254).
- Indonesian Standard Code. (2020). SNI 8899:2020 Tata cara pemilihan dan modifikasi gerak tanah permukaan untuk perencanaan gedung tahan gempa. 1–43.
- Kramer, S. (1996). Geotechnical Earthquake Engineering. Prentice Hall.
- Marasabessy, M. I., Masyhur Irsyam, & Yuamar I Basarah. (2024). Comparative Study of One-Dimensional Site Response Analysis on Deep Soft Clay Deposit using DEEPSOIL and NERA. Indonesian Geotechnical Journal, 3(1), 1–14. https://doi.org/10.56144/igj.v3i1.81
- Marasabessy, M. I., & Widodo. (2017). Pengaruh Interaksi Kinematik Massa Bangunan Terhadap Respons Non Linier Inelastik Lapisan Tanah. Jurnal Teknisia, 22(1), 307–315.
- McGann, C. R., Bradley, B. A., Wotherspoon, L. M., & Lee, R. L. (2021). Basin effects and limitations of 1D site response analysis from 2D numerical models of the thorndon basin. Bulletin of the New Zealand Society for Earthquake Engineering, 54(1), 21–30. https://doi.org/10.5459/bnzsee.54.1.21-30
- Misliniyati, R., Sahadewa, A., Hendriyawan, & Irsyam, M. (2019). Parametric study of one-dimensional seismic site response analyses based on local soil condition of jakarta. Journal of Engineering and Technological Sciences, 51(3), 392–410. https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.7
- Naing, T., Pramumijoyo, S., & Kawase, H. (2015). Preliminary Evaluation of Local Site Conditon in Yogyakarta Basin. Journal of Applied Geology, 1(1), 9–18. https://doi.org/10.22146/jag.7223
- Pawirodikromo, W., Makrup, L., Teguh, M., Suryo, B., & Hartantyo, E. (2019). Site Coefficient of Short Fa and Long period Fv Maps Constructed from the Probabilistic Seismic Hazard Analysis in Yogyakarta Special Province. MATEC Web of Conferences, 280, 01001. https://doi.org/10.1051/matecconf/201928001001
- Phillips, C., & Hashash, Y. M. A. (2009). Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158. https://doi.org/10.1016/j.soildyn.2009.01.004
- Pramumijoyo, S. (2009). Road to earthquake mitigation: Lesson learnt from the Yogyakarta earthquake 2006. Journal of Applied Geology, 1(2), 32–36. https://doi.org/10.22146/jag.6672
- PuSGeN. (2017). PETA SUMBER DAN BAHAYA GEMPA INDONESIA TAHUN 2017. In Kementerian Pekerjaan Umum dan Perumahan Rakyat. https://doi.org/10.1002/9780470742341.ch7
- PuSGeN. (2022). PETA DEAGREGASI BAHAYA GEMPA INDONESIA UTUK PERENCANAAN DAN EVALUASI INFRASTRUKTUR TAHAN GEMPA.
- Saputra, E. (2023). Penyusunan Peta Koefisien Amplifikasi Berdasarkan Rasio Spektra Percepatan. Rekayasa Sipil, 17(3), 282–288. https://doi.org/10.21776/ub.rekayasasipil.2023.017.03.9
- Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Analysis. Earthquake Engineering Research Center, EERC, 70–10, 41.
- Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering, 118(5), 836. https://doi.org/10.1016/0148-9062(91)90820-c
- Wair, B. R., Dejong, J. T., & Shantz, T. (2012). Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering, 8(December), 68.
- Wibowo, N. B., & Huda, I. (2020). Analisis Amplifikasi, Indeks Kerentanan Seismik Dan Klasifikasi Tanah Berdasarkan Distribusi Vs30 D.I.Yogyakarta Analysis Of Amplification, Seismic Vulnerability Index And Soil Clasification Based On Vs30 In Yogyakarta. Buletin Meteorologi, Klimatologi, Dan Geofisika, 1(2), 21–31. http://usgs.maps.arcgis.com/apps/we
- Zalachoris, G., & Rathje, E. M. (2015). Evaluation of One-Dimensional Site Response Techniques Using Borehole Arrays. Journal of Geotechnical and Geoenvironmental Engineering, 141(12). https://doi.org/10.1061/(asce)gt.1943-5606.0001366
- Zhou, Y. G., Chen, J., Chen, Y. M., Kutter, B. L., Zheng, B. L., Wilson, D. W., Stringer, M. E., & Clukey, E. C. (2017). Centrifuge modeling and numerical analysis on seismic site response of deep offshore clay deposits. Engineering Geology, 227, 54–68. https://doi.org/10.1016/j.enggeo.2017.01.008
References
Afacan, K. B., Brandenberg, S. J., & Stewart, J. P. (2014). Centrifuge Modeling Studies of Site Response in Soft Clay over Wide Strain Range. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 1–13. https://doi.org/10.1061/(asce)gt.1943-5606.0001014
Darendeli, M. . (2001). Development of A New Family of Normalized Modulus Reduction and Material Damping Curves.
Delfebriyadi, Irsyam, M., Hutapea, B. M., Imran, I., & Asrurifak, M. (2019). Determination of site amplification deep soil layers using 1-d site response analysis (Case study: Jakarta city, Indonesia). Journal of Engineering and Technological Sciences, 51(6), 824–838. https://doi.org/10.5614/j.eng.technol.sci.2019.51.6.6
Groholski, D. R., Hashash, Y. M. A., Kim, B., Musgrove, M., Harmon, J., & Stewart, J. P. (2016). Simplified Model for Small-Strain Nonlinearity and Strength in 1D Seismic Site Response Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 142(9). https://doi.org/10.1061/(asce)gt.1943-5606.0001496
Guerreiro, P., Kontoe, S., & Taborda, D. (2012). Comparative Study Of Stiffness Reduction And Damping Curves. 2–11.
Hashash, Y. M. A., Musgrove, M., Harmon, J., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D. R., Phillips, C. A., & Park, D. (2020). Deepsoil 7. 1–170.
Hashash, Y. M. a, & Groholski, D. R. (2010). Recent advances in non-linear site response analysis. Fifth Interantional Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss, 29(6), 1–22. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Remarks+on+site+response+analysis+by+using+Plaxis+dynamic+module#0
Indonesian Standard Code. (2019). SNI 1726:2019 - Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung. In Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (Issue 8, p. 254).
Indonesian Standard Code. (2020). SNI 8899:2020 Tata cara pemilihan dan modifikasi gerak tanah permukaan untuk perencanaan gedung tahan gempa. 1–43.
Kramer, S. (1996). Geotechnical Earthquake Engineering. Prentice Hall.
Marasabessy, M. I., Masyhur Irsyam, & Yuamar I Basarah. (2024). Comparative Study of One-Dimensional Site Response Analysis on Deep Soft Clay Deposit using DEEPSOIL and NERA. Indonesian Geotechnical Journal, 3(1), 1–14. https://doi.org/10.56144/igj.v3i1.81
Marasabessy, M. I., & Widodo. (2017). Pengaruh Interaksi Kinematik Massa Bangunan Terhadap Respons Non Linier Inelastik Lapisan Tanah. Jurnal Teknisia, 22(1), 307–315.
McGann, C. R., Bradley, B. A., Wotherspoon, L. M., & Lee, R. L. (2021). Basin effects and limitations of 1D site response analysis from 2D numerical models of the thorndon basin. Bulletin of the New Zealand Society for Earthquake Engineering, 54(1), 21–30. https://doi.org/10.5459/bnzsee.54.1.21-30
Misliniyati, R., Sahadewa, A., Hendriyawan, & Irsyam, M. (2019). Parametric study of one-dimensional seismic site response analyses based on local soil condition of jakarta. Journal of Engineering and Technological Sciences, 51(3), 392–410. https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.7
Naing, T., Pramumijoyo, S., & Kawase, H. (2015). Preliminary Evaluation of Local Site Conditon in Yogyakarta Basin. Journal of Applied Geology, 1(1), 9–18. https://doi.org/10.22146/jag.7223
Pawirodikromo, W., Makrup, L., Teguh, M., Suryo, B., & Hartantyo, E. (2019). Site Coefficient of Short Fa and Long period Fv Maps Constructed from the Probabilistic Seismic Hazard Analysis in Yogyakarta Special Province. MATEC Web of Conferences, 280, 01001. https://doi.org/10.1051/matecconf/201928001001
Phillips, C., & Hashash, Y. M. A. (2009). Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158. https://doi.org/10.1016/j.soildyn.2009.01.004
Pramumijoyo, S. (2009). Road to earthquake mitigation: Lesson learnt from the Yogyakarta earthquake 2006. Journal of Applied Geology, 1(2), 32–36. https://doi.org/10.22146/jag.6672
PuSGeN. (2017). PETA SUMBER DAN BAHAYA GEMPA INDONESIA TAHUN 2017. In Kementerian Pekerjaan Umum dan Perumahan Rakyat. https://doi.org/10.1002/9780470742341.ch7
PuSGeN. (2022). PETA DEAGREGASI BAHAYA GEMPA INDONESIA UTUK PERENCANAAN DAN EVALUASI INFRASTRUKTUR TAHAN GEMPA.
Saputra, E. (2023). Penyusunan Peta Koefisien Amplifikasi Berdasarkan Rasio Spektra Percepatan. Rekayasa Sipil, 17(3), 282–288. https://doi.org/10.21776/ub.rekayasasipil.2023.017.03.9
Seed, H. B., & Idriss, I. M. (1970). Soil Moduli and Damping Factors for Dynamic Analysis. Earthquake Engineering Research Center, EERC, 70–10, 41.
Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering, 118(5), 836. https://doi.org/10.1016/0148-9062(91)90820-c
Wair, B. R., Dejong, J. T., & Shantz, T. (2012). Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering, 8(December), 68.
Wibowo, N. B., & Huda, I. (2020). Analisis Amplifikasi, Indeks Kerentanan Seismik Dan Klasifikasi Tanah Berdasarkan Distribusi Vs30 D.I.Yogyakarta Analysis Of Amplification, Seismic Vulnerability Index And Soil Clasification Based On Vs30 In Yogyakarta. Buletin Meteorologi, Klimatologi, Dan Geofisika, 1(2), 21–31. http://usgs.maps.arcgis.com/apps/we
Zalachoris, G., & Rathje, E. M. (2015). Evaluation of One-Dimensional Site Response Techniques Using Borehole Arrays. Journal of Geotechnical and Geoenvironmental Engineering, 141(12). https://doi.org/10.1061/(asce)gt.1943-5606.0001366
Zhou, Y. G., Chen, J., Chen, Y. M., Kutter, B. L., Zheng, B. L., Wilson, D. W., Stringer, M. E., & Clukey, E. C. (2017). Centrifuge modeling and numerical analysis on seismic site response of deep offshore clay deposits. Engineering Geology, 227, 54–68. https://doi.org/10.1016/j.enggeo.2017.01.008