Main Article Content

Abstract

The Indonesian archipelago is situated in a highly active geological zone, making it prone to frequent earthquakes. West Sumatra, located on the west coast of central Sumatra, comprises lowland coastal areas and volcanic plateaus formed by the Barisan Mountains, covering a land area of 42,297.30 km² (2.17% of Indonesia's territory). This research aims to determine which interpolation method—Inverse Distance Weighted (IDW) and Thin Plate Spline (TPS)—provides more accurate predictions of earthquake strength in West Sumatra. The dataset consists of 229 earthquake events, divided into 90% for training (206 points) and 10% for testing (23 points). The training data was further subdivided into 80% training data 2 (164 points) and 20% validation data (42 points). The interpolation processes using the IDW and TPS methods were repeated 100 times, with the training 2 and validation data randomly shuffled in each iteration. Visualization of the interpolation results indicated that the earthquake magnitudes ranged from 2.0 to 4.5. Although the Mean Absolute Percentage Error (MAPE) values for the TPS method on the test and validation datasets were 16.42 and 14.29, respectively—slightly lower than the MAPE values for the IDW method—the t-test results showed no statistically significant difference between the two methods. Statistically, there is no significant difference between IDW and TPS in terms of predictive accuracy. However, researchers prefer the IDW method due to its computational efficiency and simplicity. Therefore, IDW is considered the most suitable method for analyzing earthquake strength in the West Sumatra region

Keywords

Earthquake ,Interpolation Inverse Distance Weighted Thin Plate Spline

Article Details

Author Biography

Nabila Azzahra Haris Putri, Statistics Department, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia

Statistics Department, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia

How to Cite
Nabila Azzahra Haris Putri, & Fauzan, A. (2024). Comparison of Inverse Distance Weighted and Thin Plate Spline Interpolation Methods in Projecting the Strength of the West Sumatra Earthquake. EKSAKTA: Journal of Sciences and Data Analysis, 5(2), 185–193. https://doi.org/10.20885/EKSAKTA.vol5.iss2.art9

References

  1. W. Erlangga, M. Teguh, M. Mushthofa, I. Trianggoro Saputro, and G. Setiadi, Sebaran gempa utama berdasarkan magnitudo dan kedalaman di wilayah Mamuju dan sekitarnya, Teknisia 27(2) (2022) 122–131.
  2. R. Metrikasari and A. Choiruddin, Pemodelan risiko gempa bumi di pulau Sumatera menggunakan model inhomogeneous neyman-scott cox process, Jurnal Sains dan Seni ITS, 9(2) (2021).
  3. D. M. Guwandi, H. Andreas, and M. A. Kusuma, Analisis permasalahan sistem koordinat pada kegiatan well tie data seismik, ITB Indonesian Journal of Geospatial, 6(1) (2017) 11–30.
  4. A. D. W. Nasrullah, S. Hanifarianty, and I. Fauzi, Pola sebaran kerusakan bangunan akibat gempa bumi berbasis metode Inverse Distance Weighting (studi kasus kota Palu, provinsi Sulawesi Tengah), Jurnal pendidikan ilmu sosial, 28(2) (2019) 94–104.
  5. I. W. S. Adnyana and Abd. R. As-syakur, Application of Geographic Information System (GIS) based raster data to classify land capability in Bali Province by using differentiator pixel value method, J.Manusia dan Lingkungan, 19(1) (2012) 21–29.
  6. S. P. Sejati, Perbandingan akurasi metode Inverse Distance Weighting dan Kriging dalam pemetaan kedalaman muka air tanah, Majalah Geografi Indonesia, 33(2) (2020).
  7. H. kurniadi, E. Aprilia, J. B. Utomo, A. Kurniawan, and A. Safril, Perbandingan metode IDW dan spline dalam interpolasi data curah hujan (studi kasus curah hujan bulanan di Jawa Timur periode 2012-2016), in Prosiding Seminar Nasional Geotik 2018, (2020) 213–220.
  8. F. Amalia, Interpolasi spasial dengan pendekatan Inverse Distance Weighted dan Ordinary Kriging dalam estimasi kekuatan gempa bumi, Final Task, Universitas Islam Indonesia, Yogyakarta, 2023.
  9. R. A. Yudanegara, D. Astutik, A. Hernandi, T. P. Soedarmodjo, and E. Alexander, Penggunaan metode inverse distance weighted (IDW) untuk pemetaan zona nilai tanah (studi kasus: kelurahan gedong meneng, Bandar Lampung), Elipsoida : Jurnal Geodesi dan Geomatika, 4(2) (2021) 85–90.
  10. J. P. Musashi, H. Pramoedyo, and R. Fitriani, Comparison of Inverse Distance Weighted and Natural Neighbor Interpolation method at air temperature data in Malang region, CAUCHY: Jurnal Matematika Murni dan Aplikasi, 5(2) (2018) 48–54.
  11. R. L. Islami and P. R. Sihombing, Interpolasi curah hujan ekstrim menggunakan model spatial di provinsi Jawa Barat, Jurnal Aplikasi Statistika & Komputasi Statistik, 13(2) (2021) 15–22.
  12. W. Keller and A. Borkowski, Thin plate spline interpolation, J Geod, 93(9) (2019) 1251–1269.
  13. A. Nur Halim, A. Karisma Aji Restu, and U. Muhammadiyah Kalimantan Timur, Geospatial data optimization for mapping updates in Sungai Pinang district using the QGIS approach, Pengabdian Kepada Masyarakat, 1(6) (2023).
  14. D. Hartono et al., Analisis sejarah, dampak, dan penanggulangan bencana gempa bumi pada saat pandemi covid-19 di Sulawesi Barat, PENDIPA Journal of Science Education, 5(2) (2021) 218–224.
  15. G. M. S. Febriyan, Pemanfaatan data geospasial dalam proses pembelajaran geografi pada kondisi bencana covid-19, Jurnal Geografika (Geografi Lingkungan Lahan Basah) , 1(1) (2020) 20–29.
  16. L. Singal and Y. D. Y. Rindengan, Comparative analysis of google maps coordinates points and professional GPS tools in Manado city, Jurnal Teknik Informatika, 16(2) (2021) 157–164.
  17. N. R. Hasna, A. Setiawan, and H. A. Parhusip, Penentuan lokasi lumbung pangan berdasarkan gravity location models dengan koordinat UTM di provinsi Maluku Utara, Jurnal Sains dan Edukasi Sains, 1(2) (2018) 7–16.
  18. N. Arif, Studi komparasi kriging dan IDW untuk estimasi spasial bahan organik tanah, Geomedia: Majalah Ilmiah dan Informasi Kegeografian, 17(2) (2019).
  19. E. Respatti, R. Goejantoro, and S. Wahyuningsih, Perbandingan metode Ordinary Kriging dan Inverse Distance Weighted untuk estimasi elevasi pada data topografi (studi kasus: topografi wilayah FMIPA Universitas Mulawarman), Jurnal EKSPONENSIAL, 5(2) (2014).
  20. W. Keller and A. Borkowski, Thin plate spline interpolation, J Geod, 93(9) (2019) 1251–1269.
  21. M. Dunitz, Thin-plate splines on the sphere for interpolation, computing spherical averages, and solving inverse problems, Image Processing On Line, 13 (2023) 199.
  22. R. E. Andarasmono, Penggunaan thin plate spline untuk memetakan penyebaran penyakit diare di kabupaten dan kota propinsi Jawa Timur, Thesis, Universitas Airlangga, (2003).

Most read articles by the same author(s)