Main Article Content
Abstract
Various types of lung diseases affect the human respiratory system, with pneumonia, tuberculosis, and Covid-19 being among the most common. Early detection plays a crucial role in improving treatment outcomes and reducing mortality rates. Chest X-ray imaging is one of the most widely used diagnostic methods; however, it typically relies on manual interpretation by medical professionals, which can be time-consuming and prone to inconsistencies. This study aims to apply the Convolutional Neural Network (CNN) method as an automated approach to classify chest X-ray images of lung conditions. The dataset consists of 460 X-ray images for each category: normal, pneumonia, tuberculosis, and Covid-19. The CNN model was trained using an input shape of 224×224 pixels, a 3×3 filter size, and 5 epochs. Evaluation results showed that the model achieved 97% accuracy on the validation and 93% on the testing data. These findings highlight the potential of CNN in supporting automated diagnosis of lung diseases. In the future, this technology is expected to assist healthcare professionals in delivering faster and more accurate diagnoses, particularly in areas with limited access to radiology experts. Moreover, this innovation aligns with Sustainable Development Goal (SDGs) 3: Good Health and Well-being, by promoting early detection, timely treatment, and more equitable access to quality healthcare services.
Keywords
Article Details
Copyright (c) 2025 Danang Bagus Wibowo, Achmad Fauzan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- A. Saputra, “Sistem Pakar Identifikasi Penyakit Paru-Paru Pada Manusia Menggunakan Pemrograman Visual Basic 6.0,” Jurnal Teknologi dan Informatika (Teknomatika), vol. 1, no. 3, pp. 202–222, 2011.
- D. Djojodibroto, Respirologi (Respiratory Medicine). Jakarta: EGC, 2014.
- Yuliana, “Corona virus diseases (Covid-19): Sebuah Tinjauan Literatur,” Wellness and Healty Magazine, vol. 2, no. 1, p. 187, Feb. 2020, [Online]. Available: https://wellness.journalpress.id/wellness
- Dinas Kesehatan Provinsi Bali, “Profil Kesehatan Provinsi Bali Tahun 2016,” Bali, 2017.
- I. Septiyanti, M. A. Khalif, and E. D. Anwar, “Analisis Dosis Paparan Radiasi Pada General X-Ray II Di Instalasi Radiologi Rumah Sakit Muhammadiyah Semarang,” Jurnal Imejing Diagnostik (JImeD), vol. 6, no. 2, pp. 96–102, Jul. 2020, doi: 10.31983/jimed.v6i2.5858.
- A. H. Fauziyah, “Deteksi Pneumonia Pada Anak-Anak Dari Citra X-Ray Berbasis Convolutional Neural Network,” Institut Teknologi Sepuluh Nopember, 2020.
- I. Nurcahyati, T. H. Saragih, A. Farmadi, D. Kartini, and M. Muliadi, “Classification of Lung Disease in X-Ray Images Using Gray Level Co-Occurrence Matrix Method and Convolutional Neural Network,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 4, pp. 332–342, Aug. 2024, doi: 10.35882/jeeemi.v6i4.457.
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
- K. Xu, D. Feng, and H. Mi, “Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image,” Molecules, vol. 22, no. 12, p. 2054, Nov. 2017, doi: 10.3390/molecules22122054.
- G. Mezzadri, T. Laloë, F. Mathy, and P. Reynaud-Bouret, “Hold-out strategy for selecting learning models: Application to categorization subjected to presentation orders,” J Math Psychol, vol. 109, p. 102691, 2022.
- Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
- P. K. Choudhary and H. N. Nagaraja, Measuring Agreement. Wiley, 2017. doi: 10.1002/9781118553282.
- J. Ker, L. Wang, J. Rao, and T. Lim, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2018, doi: 10.1109/ACCESS.2017.2788044.
- V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” Jan. 2018. [Online]. Available: http://arxiv.org/abs/1603.07285
- T. Shafira, “Implementasi Convolutional Neural Networks untuk Klasifikasi Citra Tomat Menggunakan Keras,” Universitas Islam Indonesia, Yogyakarta, 2018.
- J. Brownlee, Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras. Machine Learning Mastery, 2017.
- K. P. Danukusumo, “Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Klasifikasi Citra Candi Berbasis GPU,” Universitas Atma Jaya Yogyakarta, Yogyakarta, 2017.
- K. R. Bokka, S. Hora, T. Jain, and M. Wambugu, Deep Learning for Natural Language Processing: Solve your natural language processing problems with smart deep neural networks, 1st ed. Packt Publishing Ltd., 2019.
- L. S. Ramba, “Design of a Voice Controlled Home Automation System using Deep Learning Convolutional Neural Network (DL-CNN),” Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, vol. 8, no. 1, pp. 57–73, Jun. 2020, doi:
- 34010/telekontran.v8i1.3078.
- C. E. Nwankpa, W. I. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” in 2nd International Conference on Computational Sciences and Technologies, MUET Jamshoro, Dec. 2020. doi: 10.48550/arXiv.1811.03378.
- S. Sumahasan, “Object Detection using Deep Learning Algorithm CNN,” Int J Res Appl Sci Eng Technol, vol. 8, no. 7, pp. 1578–1584, Jul. 2020, doi: 10.22214/ijraset.2020.30594.
- M. Muntean and F.-D. Militaru, “Metrics for Evaluating Classification Algorithms,” 2023, pp. 307–317. doi: 10.1007/978-981-19-6755-
- _24.
- N. S. Akbar, T. Zamir, J. Akram, T. Noor, and T. Muhammad, “Simulation of hybrid boiling nano fluid flow with convective boundary conditions through a porous stretching sheet through Levenberg Marquardt artificial neural networks approach,” Int J Heat Mass Transf, vol. 228, p. 125615, Aug. 2024, doi: 10.1016/j.ijheatmasstransfer.2024.125615.
- M. Vakalopoulou, S. Christodoulidis, N. Burgos, O. Colliot, and V. Lepetit, “Deep Learning: Basics and Convolutional Neural Networks (CNNs),” 2023, pp. 77–115. doi: 10.1007/978-1-0716-3195-9_3.
- M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, Sep. 2018, [Online]. Available: http://j-ptiik.ub.ac.id.
References
A. Saputra, “Sistem Pakar Identifikasi Penyakit Paru-Paru Pada Manusia Menggunakan Pemrograman Visual Basic 6.0,” Jurnal Teknologi dan Informatika (Teknomatika), vol. 1, no. 3, pp. 202–222, 2011.
D. Djojodibroto, Respirologi (Respiratory Medicine). Jakarta: EGC, 2014.
Yuliana, “Corona virus diseases (Covid-19): Sebuah Tinjauan Literatur,” Wellness and Healty Magazine, vol. 2, no. 1, p. 187, Feb. 2020, [Online]. Available: https://wellness.journalpress.id/wellness
Dinas Kesehatan Provinsi Bali, “Profil Kesehatan Provinsi Bali Tahun 2016,” Bali, 2017.
I. Septiyanti, M. A. Khalif, and E. D. Anwar, “Analisis Dosis Paparan Radiasi Pada General X-Ray II Di Instalasi Radiologi Rumah Sakit Muhammadiyah Semarang,” Jurnal Imejing Diagnostik (JImeD), vol. 6, no. 2, pp. 96–102, Jul. 2020, doi: 10.31983/jimed.v6i2.5858.
A. H. Fauziyah, “Deteksi Pneumonia Pada Anak-Anak Dari Citra X-Ray Berbasis Convolutional Neural Network,” Institut Teknologi Sepuluh Nopember, 2020.
I. Nurcahyati, T. H. Saragih, A. Farmadi, D. Kartini, and M. Muliadi, “Classification of Lung Disease in X-Ray Images Using Gray Level Co-Occurrence Matrix Method and Convolutional Neural Network,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 4, pp. 332–342, Aug. 2024, doi: 10.35882/jeeemi.v6i4.457.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
K. Xu, D. Feng, and H. Mi, “Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image,” Molecules, vol. 22, no. 12, p. 2054, Nov. 2017, doi: 10.3390/molecules22122054.
G. Mezzadri, T. Laloë, F. Mathy, and P. Reynaud-Bouret, “Hold-out strategy for selecting learning models: Application to categorization subjected to presentation orders,” J Math Psychol, vol. 109, p. 102691, 2022.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
P. K. Choudhary and H. N. Nagaraja, Measuring Agreement. Wiley, 2017. doi: 10.1002/9781118553282.
J. Ker, L. Wang, J. Rao, and T. Lim, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2018, doi: 10.1109/ACCESS.2017.2788044.
V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” Jan. 2018. [Online]. Available: http://arxiv.org/abs/1603.07285
T. Shafira, “Implementasi Convolutional Neural Networks untuk Klasifikasi Citra Tomat Menggunakan Keras,” Universitas Islam Indonesia, Yogyakarta, 2018.
J. Brownlee, Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras. Machine Learning Mastery, 2017.
K. P. Danukusumo, “Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Klasifikasi Citra Candi Berbasis GPU,” Universitas Atma Jaya Yogyakarta, Yogyakarta, 2017.
K. R. Bokka, S. Hora, T. Jain, and M. Wambugu, Deep Learning for Natural Language Processing: Solve your natural language processing problems with smart deep neural networks, 1st ed. Packt Publishing Ltd., 2019.
L. S. Ramba, “Design of a Voice Controlled Home Automation System using Deep Learning Convolutional Neural Network (DL-CNN),” Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, vol. 8, no. 1, pp. 57–73, Jun. 2020, doi:
34010/telekontran.v8i1.3078.
C. E. Nwankpa, W. I. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” in 2nd International Conference on Computational Sciences and Technologies, MUET Jamshoro, Dec. 2020. doi: 10.48550/arXiv.1811.03378.
S. Sumahasan, “Object Detection using Deep Learning Algorithm CNN,” Int J Res Appl Sci Eng Technol, vol. 8, no. 7, pp. 1578–1584, Jul. 2020, doi: 10.22214/ijraset.2020.30594.
M. Muntean and F.-D. Militaru, “Metrics for Evaluating Classification Algorithms,” 2023, pp. 307–317. doi: 10.1007/978-981-19-6755-
_24.
N. S. Akbar, T. Zamir, J. Akram, T. Noor, and T. Muhammad, “Simulation of hybrid boiling nano fluid flow with convective boundary conditions through a porous stretching sheet through Levenberg Marquardt artificial neural networks approach,” Int J Heat Mass Transf, vol. 228, p. 125615, Aug. 2024, doi: 10.1016/j.ijheatmasstransfer.2024.125615.
M. Vakalopoulou, S. Christodoulidis, N. Burgos, O. Colliot, and V. Lepetit, “Deep Learning: Basics and Convolutional Neural Networks (CNNs),” 2023, pp. 77–115. doi: 10.1007/978-1-0716-3195-9_3.
M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, Sep. 2018, [Online]. Available: http://j-ptiik.ub.ac.id.