Main Article Content


This study was conducted to measure students' conceptual understanding of chemical bonds. The test through an online form includes a two-level test—a total of 50 students who have studied chemical bonds as research subjects. The method used is quantitative through analysis with the dichotomous Rasch model. A total of seven sub-concepts of chemical bonds have been tested on students through a two-level test, namely questions, and reasons. The questions given were declared valid and reliable according to the Rasch model. The concept that is considered the most difficult for students is the description of orbitals and molecular hybridization


chemical bonding organic chemistry Rasch model

Article Details

How to Cite
Mulyanti, S., Nugroho, D. E., & Harahap, L. K. (2023). Student’s Chemical Bonds Concept: Rasch Model Analysis. International Journal of Chemistry Education Research, 7(1), 33–38.


  1. M. Bernardi, A. C. G. Miranda, M. E. F. Braibante, and S. Pazinato, Journal of Chemistry Education, 2020, doi: 10.1021/acs.jchemed.0c00353.
  2. J. Hidayat, H. Firman, Y. Sunarya, and S. R. I. Redjeki, Journal of Engineering Science and Technology, vol. 14, pp. 59–67, 2019.
  3. A. Nimmermark, L. Öhrström, J. Mårtensson, and B. Davidowitz, 17, 4, pp. 985–1005, 2016, doi: 10.1039/c6rp00106h.
  4. R. Ayral and K. Molvinger, “Using Games to Build and Improve 10th Grade Students ’Understanding of the Concept of Chemical Bonding and the Representation of Molecules ̈,” 2020, doi: 10.1021/acs.jchemed.0c01287.
  5. A. Mahmudah, Nahadi, and H. Firman, Journal of Physics: Conference Series, 1521, 4, 2020, doi: 10.1088/1742-6596/1521/4/042059.
  6. R. Hanson, European Journal of Research and Reflection in Educational Sciences, 5, November, pp. 7–20, 2017.
  7. M. D. W. Ernawati, D. Muhammad, A. Asrial, and M. Muhaimin, International Journal of Evaluation and Research in Education, 8, 4, pp. 581–589, 2019, doi: 10.11591/ijere.v8i4.20257.
  8. N. Nuryuliana and A. K. Prodjosantoso, JTK (Jurnal Tadris Kimiya), 6, 2, pp. 223–235, 2021, doi: 10.15575/jtk.v6i2.14872.
  9. S. Mulyanti, Suwahono, H. Setiowati, and L. S. Ningrum, Jurnal Penelitian Pendidikan IPA, 8, 3, 2022, doi: 10.29303/jppipa.v8i3.1383.
  10. S. Mulyanti, W. Sukmawati, N. Elisa, and H. Tarkin, Phenomenon : Jurnal Pendidikan MIPA, 12, 1, pp. 17–30, 2022.
  11. S. Mulyanti and S. Rahmania, Jurnal Zarah, 10, 1, pp. 21–27, 2022.
  12. B. Sumintono, “Rasch Model Measurements as Tools in Assesment for Learning,” 2018, doi: 10.2991/icei-17.2018.11.
  13. L. Cohen, L. Manion, and K. Morrison, Research Methods in Education 8th Edition, 8th ed. New York: Routledge Taylor & Francis Group, 2018.
  14. W. J. Boone, CBE Life Sciences Education, 15, 4, 2016, doi: 10.1187/cbe.16-04-0148.
  15. S. Soeharto, Journal of Turkish Science Education, 18, 3, pp. 351–370, 2021, doi: 10.36681/tused.2021.78.
  16. T. Rachman and D. B. Napitupulu, “CommIT (Communication and Information Technology) Journal, 11, 1, p. 9, 2017, doi: 10.21512/commit.v11i1.2042.
  17. J. C. Arnold, W. J. Boone, K. Kremer, and J. Mayer, Education Sciences, 8, 4, 2018, doi: 10.3390/educsci8040184.
  18. A. Darmana, A. Sutiani, H. A. Nasution, I. Ismanisa*, and N. Nurhaswinda, Jurnal Pendidikan Sains Indonesia, 9, 3, pp. 329–345, 2021, doi: 10.24815/jpsi.v9i3.19618.
  19. S. Nedungadi, S. H. Paek, and C. E. Brown, Chemistry Teacher International, 2, 2, pp. 1–10, 2020, doi: 10.1515/cti-2019-0004.
  20. S. A. Kiray, International Journal of Education in Mathematics, Science and Technology, 4, 2, p. 147, 2016, doi: 10.18404/ijemst.85479.
  21. Y. Maeno, K. Hagino, and T. Ishiguro, “Three related topics on the periodic tables of elements,” arXiv, no. 0123456789, 2020, doi: 10.1007/s10698-020-09387-z.
  22. S. Suryelita, G. Guspatni, and P. Defriati, Journal of Physics: Conference Series, 1317, 1, 2019, doi: 10.1088/1742-6596/1317/1/012147.
  23. S. Melaku, J. O. Schreck, K. Griffin, and R. B. Dabke, Journal of Chemical Education, 93, 6, pp. 1049–1055, 2016, doi: 10.1021/acs.jchemed.5b00252.
  24. M. R. Penny et al., Journal of Chemical Education, 94, 9, pp. 1265–1271, 2017, doi: 10.1021/acs.jchemed.6b00953.
  25. K. Smiar and J. D. Mendez, Journal of Chemical Education, 93, 9, pp. 1591–1594, 2016, doi: 10.1021/acs.jchemed.6b00297.
  26. A. Winarti and A. Mubarak, Indonesian Journal on Learning and Advanced Education (IJOLAE), 2, 1, pp. 1–9, 2019, doi: 10.23917/ijolae.v2i1.8985.
  27. G. Raggi, I. F. Galván, C. L. Ritterhoff, M. Vacher, and R. Lindh, Journal of Chemical Theory and Computation, 16, 6, pp. 3989–4001, 2020, doi: 10.1021/acs.jctc.0c00257.
  28. R. Rosli et al., World Journal of Education, 10, 3, p. 170, 2020, doi: 10.5430/wje.v10n3p170.
  29. Z. Mahmud and A. Porter, Journal on Mathematics Education, 6, 1, pp. 1–10, 2015, doi: 10.22342/jme.6.1.1937.1-10.
  30. H. Fauzi, I. Farida, Y. Sukmawardani, and F. S. Irwansyah, Journal of Physics: Conference Series, 1402, 5, 2019, doi: 10.1088/1742-6596/1402/5/055059.
  31. A. Asmiyunda, H. Hardeli, A. Alizar, and B. Oktavia, International Journal of Progressive Sciences and Technologies, 26, 2, pp. 168–178, 2021, [Online]. Available:
  32. E. A. Lestari, Harjito, E. Susilaningsih, and N. WIjayati, Jurnal Inovasi Pendidikan Kimia, 15, 2, pp. 2824–2830, 2021.
  33. R. Hanson, International Journal for Cross-Disciplinary Subjects in Education, 8, 2, pp. 3112–3122, 2017, doi: 10.20533/ijcdse.2042.6364.2017.0419.