Main Article Content
Abstract
Mastering thermochemistry can be challenging for students. This study tackles teaching thermochemistry, a challenging subject with complex concepts, calculations, and lab work that students often struggle with. A structured learning approach integrating Culturally Responsive Teaching (CRT) with Augmented Reality (AR) was implemented. Conducted through action research over two cycles, the study involved 35 high school students during the 2023/2024 academic year. The study found significant improvements, with average scores rising from 76.74 in Cycle I to 83.94 in Cycle II, and the percentage of students achieving classical completion increasing from 65% to 77%.
Keywords
Article Details
Copyright (c) 2025 Eko Trian Pramono Aji, Ananta Ardyansyah, Tsalis Jauza Nareswari, Noviachri Imro’atul Sa’diyah, Ulfa Rahmawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Author retain copyright and grant the journal right of first publication with the simultaneously licenced under A Creative Commons Attribution (CC-By-SA) 4.0 License that allows others to share the work with an acknowledgment of the worsk's authorship and initial publication in this journal.
References
- Effendy, Chemistry For High School and MA Students Class XI Volume 2A, 1st ed. Malang: Academic Publishing, 2017.
- Ramli, Munasprianto, M. Saridewi, and T. M. Budhi, Kimia Sma/Ma Kelas Xi. 2022.
- F. Rahmatania, A. Andromeda, and F. R. Rahim, “Efektivitas Penggunaan Modul Termokimia Berbasis Inkuiri Terbimbing Terintegrasi Eksperimen Terhadap Hasil Belajar Peserta Didik,” Edu Cendikia J. Ilm. Kependidikan, vol. 1, no. 1, pp. 23–30, 2021, doi: 10.47709/educendikia.v1i1.1009.
- N. Adisha and E. Rohaeti, “The Influence of Problem Based Learning Models on Cognitive Learning Outcomes and Scientific Attitudes of High School Students on Thermochemical Subject,” J. Penelit. Pendidik. IPA, vol. 10, no. 4, pp. 2136–2143, 2024, doi: 10.29303/jppipa.v10i4.6448.
- N. Majas, “Pengaruh Pembelajaran Sains Teknologi Masyarakat (STM) terhadap Keterampilan Proses Sains pada Materi Termokimia Siswa Kelas XI SMAN 1 Simpang Kiri,” 2016.
- M. & M. Aprialisa, “Meningkatkan Pemahaman Siswa Pada Materi Termokimia Melalui Model Pembelajaran Kooperatif Tipe Two Stay Two Stray,” J. Inov. Pendidik. Sains, vol. 1, no. 1, pp. 41–49, 2010. doi: 10.20527/quantum.v1i1.3376
- G. R. Gevi and A. Andromeda, “Pengembangan E-Modul Laju Reaksi Berbasis Inkuiri Terbimbing Terintegrasi Virtual Laboratory Untuk SMA/ MA,” Edukimia, vol. 1, no. 1, pp. 53–61, 2019, doi: 10.24036/ekj.v1.i1.a8.
- N. Annafi, A. Ashadi, and S. Mulyani, “Pengembangan Lembar Kegiatan Peserta Didik Berbasis Inkuiri Terbimbing Pada Materi Termokimia Kelas XI SMA/MA,” INKUIRI: Jurnal Pendidikan IPA, vol. 4, no. 3, pp. 21-28, 2015. doi: https://jurnal.uns.ac.id/inkuiri/article/view/9554
- N. Vadilla, “Pengembangan E-LKPD Berbasis Model Discovery Learning Pada Materi Termokimia Untuk Mengukur Keterampilan Sains Siswa,” Educenter J. Ilm. Pendidik., vol. 1, no. 3, pp. 152–164, 2022, doi: 10.55904/educenter.v1i3.63.
- E. Ellizar, S. D. Putri, M. Azhar, and H. Hardeli, “Developing a discovery learning module on chemical equilibrium to improve critical thinking skills of senior high school students,” J. Phys. Conf. Ser., vol. 1185, no. 1, 2019, doi: 10.1088/1742-6596/1185/1/012145.
- E. Erlidawati and H. Habibati, “Penerapan Model Discovery Learning untuk Meningkatkan Aktivitas dan Hasil Belajar Peserta Didik pada Materi Termokimia,” J. Pendidik. Sains Indones., vol. 8, no. 1, pp. 92–104, 2020, doi: 10.24815/jpsi.v8i1.16099.
- Suyati and A. Sutiani, “Upaya Meningkatkan Hasil Belajar Kimia Siswa Melalui Model Pembelajaran Discovery Learning Pada Materi Termokimia Di Man 2 Model Medan,” J. Penelit. Bid. Pendidik., vol. 24, no. 1, pp. 22–27, 2018. doi: 10.24114/jpbp.v24i1.12136
- G. Gay, “Preparing For Culturally Responsive Teaching,” J. Teach. Educ., vol. 53, no. 2, 2002. doi: 10.1177/0022487102053002003
- T. Jauza Nareswari, H. Wahyu Wijaya, and N. Candra Eka Setiawan, “Development of STEAM-2C: Integrated Acid-Base Digital Book Based on Malang Local Wisdom,” E3S Web Conf., vol. 481, 2024, doi: 10.1051/e3sconf/202448104003.
- A. Ardyansyah, “Enhancing Chemistry Education Through The Integration of Rote Ndao Cultural Practices : An Ethnographic Exploration of Ethnochemistry,” J. Educ. Chem., vol. 6, no. 2, pp. 111–126, 2024, doi: 10.21580/jec.2024.6.2.22321.
- Y. Rahmawati, A. Ridwan, and Nurbaity, “Should we learn culture in chemistry classroom? Integration ethnochemistry in culturally responsive teaching,” AIP Conf. Proc., vol. 1868, 2017, doi: 10.1063/1.4995108.
- Mustaqim, “Multimedia services on top of M3 Smart Spaces,” Proc. - 2010 IEEE Reg. 8 Int. Conf. Comput. Technol. Electr. Electron. Eng. Sib., vol. 13, no. 2, pp. 728–732, 2010, doi: 10.1109/SIBIRCON.2010.5555154.
- P. P. Nechypurenko, and V. N. Soloviev, “Using ICT as the Tools of Forming the Senior Pupils’ Research Competencies in the Profile Chemistry Learning of Elective Course ‘Basics of Quantitative Chemical Analysis,’” EducDim, vol. 51, pp. 7–24, 2019. doi: https://doi.org/10.31812/pedag.v51i0.3648.
- N. Tekin, O. Aslan, and S. Yılmaz, “Improving Pre-Service Science Teachers’ Content Knowledge and Argumentation Quality through Socio-Scientific Issues-Based Modules: An Action Research Study,” J. Sci. Learn., vol. 4, no. 1, pp. 80–90, 2020, doi: 10.17509/jsl.v4i1.23378.
- J. W. Creswell, Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 4th ed. Boston: Pearson, 2012.
- M. Brydon-Miller, D. Greenwood, and P. Maguire, “Why Action Research?,” Action Res., vol. 1, no. 1, pp. 9–28, 2003, doi: 10.1177/14767503030011002.
- J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to Design and Ecaluate Research in Education, 8th ed. New York: Mc-Graw Hill, 2012.
- A. Setyawan, N. Aznam, Paidi, and T. Itrawati, “Influence of The Use Of Technology Through Problem Based Learning and Inkuiri Models are Leading to Scientific Communication Students Class VII,” J. Technol. Sci. Educ., vol. 10(2), no. 2, pp. 190–198, 2020. doi: 10.3926/jotse.962
- A. Fombona-Pascual, J. Fombona, and R. Vicente, “Augmented Reality, a Review of a Way to Represent and Manipulate 3D Chemical Structures,” J. Chem. Inf. Model., vol. 62, no. 8, pp. 1863–1872, 2022, doi: 10.1021/acs.jcim.1c01255.
- C. Y. Lin and H. K. Wu, “Effects of different ways of using visualizations on high school students’ electrochemistry conceptual understanding and motivation towards chemistry learning,” Chem. Educ. Res. Pract., vol. 22, no. 3, pp. 786–801, 2021, doi: 10.1039/d0rp00308e.
- J. Garzón and J. Acevedo, “Meta-analysis of the impact of Augmented Reality on students’ learning gains,” Educ. Res. Rev., vol. 27, no. April 2018, pp. 244–260, 2019, doi: 10.1016/j.edurev.2019.04.001.
- M.-B. Ibáñez and C. Delgado-Kloos, “Augmented reality for STEM learning: A systematic review,” Comput. Educ., vol. 123, pp. 109–123, 2018, doi: https://doi.org/10.1016/j.compedu.2018.05.002.
- Y. Shiue, “Impact of an Augmented Reality System on Students ’ Learning Performance for a Health Education Course,” Int. Jpurnal Manag. Econ. Soc. Sci., vol. 8, no. 3, pp. 195–204, 2019, doi: 10.32327/IJMESS.8.3.2019.12.
- A. Amores-valencia and D. Burgos, “The Impact of Augmented Reality ( AR ) on the Academic Performance of High School Students,” Electronics, vol. 12, p. 2173, 2023. doi: 10.3390/electronics12102173
- A. Amores-valencia, D. Burgos, and J. W. Branch-bedoya, “Influence of motivation and academic performance in the use of Augmented Reality in education . A systematic review,” Front. Psychol., vol. 13, p. 1011409, 2022. doi: 10.3389/fpsyg.2022.1011409.
- S.-Y. Chen and S.-Y. Liu, “Using augmented reality to experiment with elements in a chemistry course,” Comput. Human Behav., vol. 111, p. 106418, 2020, doi: https://doi.org/10.1016/j.chb.2020.106418.
- D. R. Sari, S. Yamtinah, S. R. D. Ariani, S. Saputro, E. Susanti VH, and A. S. Shidiq, “Augmented Reality Media Validity based on Tetrahedral Chemical Representation with Aiken Validation Index,” J. Penelit. Pendidik. IPA, vol. 8, no. 6, pp. 3139–3145, 2022, doi: 10.29303/jppipa.v8i6.2333.
- L. Kieran and C. Anderson, “Connecting Universal Design for Learning With Culturally Responsive Teaching,” Educ. Urban Soc., vol. 51, no. 9, pp. 1202–1216, Jul. 2018, doi: 10.1177/0013124518785012.
- A. M. Villegas and T. Lucas, “Preparing Culturally Responsive Teachers: Rethinking the Curriculum,” J. Teach. Educ., vol. 53, no. 1, pp. 20–32, Jan. 2002, doi: 10.1177/0022487102053001003.
- M. Vavrus, “Culturally responsive teaching,” in 21st Century Education: A Reference Handbook, Thousand Oaks: SAGE Publications, Inc., 2008, pp. 49–57. doi: 10.4135/9781412964012.n56.
- C. A. Warren, “Empathy, Teacher Dispositions, and Preparation for Culturally Responsive Pedagogy,” J. Teach. Educ., vol. 69, no. 2, pp. 169–183, Jun. 2017, doi: 10.1177/0022487117712487.
- L. Rahmah, N. I. P. I. Sari, and A. N. M. Ansori, “Diversity of sate (satay) as Indonesian ancient food,” Theory Pract. meat Process., vol. 9, no. 2, pp. 125–134, 2024, doi: 10.21323/2414-438x-2024-9-2-125-134. doi: 10.21323/2414-438X-2024-9-2-125-134.
- A. Husbands and S. Cranford, “A Material Perspective of Wood, Smoke, and BBQ,” Matter, vol. 1, no. 5, pp. 1092–1095, 2019, doi: 10.1016/j.matt.2019.10.014.
- D. R. Kurniati and I. Rohman, “The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter,” J. Phys. Conf. Ser., vol. 1013, no. 1, 2018, doi: 10.1088/1742-6596/1013/1/012088.
- E. Asmalia, Yuk, Mengenal Makanan Hasil Fermentasi Khas Indonesia. Jakarta Timur: Badan Pengembangan dan Pembinaan Bahasa, 2018.
- W. Al-Dahhan and E. Yousif, “Hydrogen Balloons: Bright Colors but Hidden Fire Hazard,” Int. J. Public Heal. Saf., vol. 3, no. 1, p. 151, 2018.
- F. Caruso, G. Gelardi, B. Elsener, and R. J. Flatt, “Demonstration of atomic emission from exploding hydrogen balloons for (almost) everybody,” J. Chem. Educ., vol. 90, no. 10, pp. 1406–1408, 2013, doi: 10.1021/ed300785q.
- T. Keinonen and T. de Jager, “Student Teachers’ Perspectives on Chemistry Education in South Africa and Finland,” J. Sci. Teacher Educ., vol. 28, no. 6, pp. 485–506, Aug. 2017, doi: 10.1080/1046560X.2017.1378055.
- A. Winarti, A. Almubarak, P. Saadi, I. Ijirana, S. Aminah, and R. Ratman, “Culturally Responsive Chemistry Teaching (CRCT) of College Students as A Novice Teacher: Does It Matter?,” JTK (Jurnal Tadris Kim., vol. 7, no. 2, pp. 175–189, 2022, doi: 10.15575/jtk.v7i1.20676.
- J. C. Ortiz-Rodríguez, H. Brinkman, L. Nglankong, B. Enderle, and J. M. Velázquez, “Promoting Inclusive and Culturally Responsive Teaching Using Co-classes for General Chemistry,” J. Chem. Educ., vol. 99, no. 1, pp. 162–170, Jan. 2022, doi: 10.1021/acs.jchemed.1c00339.
- Y. Rahmawati, A. Mardiah, E. Taylor, P. C. Taylor, and A. Ridwan, “Chemistry Learning through Culturally Responsive Transformative Teaching (CRTT): Educating Indonesian High School Students for Cultural Sustainability,” Sustainability, vol. 15, no. 8, pp. 1-18, 2023. doi: 10.3390/su15086925
- W. Cao and Z. Yu, “The impact of augmented reality on student attitudes, motivation, and learning achievements—a meta-analysis (2016–2023),” Humanit. Soc. Sci. Commun., vol. 10, no. 1, pp. 1–12, 2023, doi: 10.1057/s41599-023-01852-2.
- W. Min and Z. Yu, “A Bibliometric Analysis of Augmented Reality in Language Learning,” Sustainability, vol. 15, no. 9, p. 7235, 2023, doi: 10.3390/su15097235.
- J. Y. Lai and L. T. Chang, “Impacts of Augmented Reality Apps on First Graders’ Motivation and Performance in English Vocabulary Learning,” SAGE Open, vol. 11, no. 4, 2021, doi: 10.1177/21582440211047549.
- L. Liang, Z. Zhang, and J. Guo, “The Effectiveness of Augmented Reality in Physical Sustainable Education on Learning Behaviour and Motivation,” Sustain. , vol. 15, no. 6, 2023, doi: 10.3390/su15065062.
- M. Akçayır and G. Akçayır, “Advantages and challenges associated with augmented reality for education: A systematic review of the literature,” Educ. Res. Rev., vol. 20, pp. 1–11, 2017, doi: https://doi.org/10.1016/j.edurev.2016.11.002.
- A. Ardyansyah and S. Rahayu, “Development and Implementation of Augmented Reality-Based Card Game Learning Media with Environmental Literacy for Improving Students’ Understanding of Carbon Compounds,” Orbital, vol. 15, no. 2, pp. 118–126, 2023, doi: 10.17807/orbital.v15i2.17617.
References
Effendy, Chemistry For High School and MA Students Class XI Volume 2A, 1st ed. Malang: Academic Publishing, 2017.
Ramli, Munasprianto, M. Saridewi, and T. M. Budhi, Kimia Sma/Ma Kelas Xi. 2022.
F. Rahmatania, A. Andromeda, and F. R. Rahim, “Efektivitas Penggunaan Modul Termokimia Berbasis Inkuiri Terbimbing Terintegrasi Eksperimen Terhadap Hasil Belajar Peserta Didik,” Edu Cendikia J. Ilm. Kependidikan, vol. 1, no. 1, pp. 23–30, 2021, doi: 10.47709/educendikia.v1i1.1009.
N. Adisha and E. Rohaeti, “The Influence of Problem Based Learning Models on Cognitive Learning Outcomes and Scientific Attitudes of High School Students on Thermochemical Subject,” J. Penelit. Pendidik. IPA, vol. 10, no. 4, pp. 2136–2143, 2024, doi: 10.29303/jppipa.v10i4.6448.
N. Majas, “Pengaruh Pembelajaran Sains Teknologi Masyarakat (STM) terhadap Keterampilan Proses Sains pada Materi Termokimia Siswa Kelas XI SMAN 1 Simpang Kiri,” 2016.
M. & M. Aprialisa, “Meningkatkan Pemahaman Siswa Pada Materi Termokimia Melalui Model Pembelajaran Kooperatif Tipe Two Stay Two Stray,” J. Inov. Pendidik. Sains, vol. 1, no. 1, pp. 41–49, 2010. doi: 10.20527/quantum.v1i1.3376
G. R. Gevi and A. Andromeda, “Pengembangan E-Modul Laju Reaksi Berbasis Inkuiri Terbimbing Terintegrasi Virtual Laboratory Untuk SMA/ MA,” Edukimia, vol. 1, no. 1, pp. 53–61, 2019, doi: 10.24036/ekj.v1.i1.a8.
N. Annafi, A. Ashadi, and S. Mulyani, “Pengembangan Lembar Kegiatan Peserta Didik Berbasis Inkuiri Terbimbing Pada Materi Termokimia Kelas XI SMA/MA,” INKUIRI: Jurnal Pendidikan IPA, vol. 4, no. 3, pp. 21-28, 2015. doi: https://jurnal.uns.ac.id/inkuiri/article/view/9554
N. Vadilla, “Pengembangan E-LKPD Berbasis Model Discovery Learning Pada Materi Termokimia Untuk Mengukur Keterampilan Sains Siswa,” Educenter J. Ilm. Pendidik., vol. 1, no. 3, pp. 152–164, 2022, doi: 10.55904/educenter.v1i3.63.
E. Ellizar, S. D. Putri, M. Azhar, and H. Hardeli, “Developing a discovery learning module on chemical equilibrium to improve critical thinking skills of senior high school students,” J. Phys. Conf. Ser., vol. 1185, no. 1, 2019, doi: 10.1088/1742-6596/1185/1/012145.
E. Erlidawati and H. Habibati, “Penerapan Model Discovery Learning untuk Meningkatkan Aktivitas dan Hasil Belajar Peserta Didik pada Materi Termokimia,” J. Pendidik. Sains Indones., vol. 8, no. 1, pp. 92–104, 2020, doi: 10.24815/jpsi.v8i1.16099.
Suyati and A. Sutiani, “Upaya Meningkatkan Hasil Belajar Kimia Siswa Melalui Model Pembelajaran Discovery Learning Pada Materi Termokimia Di Man 2 Model Medan,” J. Penelit. Bid. Pendidik., vol. 24, no. 1, pp. 22–27, 2018. doi: 10.24114/jpbp.v24i1.12136
G. Gay, “Preparing For Culturally Responsive Teaching,” J. Teach. Educ., vol. 53, no. 2, 2002. doi: 10.1177/0022487102053002003
T. Jauza Nareswari, H. Wahyu Wijaya, and N. Candra Eka Setiawan, “Development of STEAM-2C: Integrated Acid-Base Digital Book Based on Malang Local Wisdom,” E3S Web Conf., vol. 481, 2024, doi: 10.1051/e3sconf/202448104003.
A. Ardyansyah, “Enhancing Chemistry Education Through The Integration of Rote Ndao Cultural Practices : An Ethnographic Exploration of Ethnochemistry,” J. Educ. Chem., vol. 6, no. 2, pp. 111–126, 2024, doi: 10.21580/jec.2024.6.2.22321.
Y. Rahmawati, A. Ridwan, and Nurbaity, “Should we learn culture in chemistry classroom? Integration ethnochemistry in culturally responsive teaching,” AIP Conf. Proc., vol. 1868, 2017, doi: 10.1063/1.4995108.
Mustaqim, “Multimedia services on top of M3 Smart Spaces,” Proc. - 2010 IEEE Reg. 8 Int. Conf. Comput. Technol. Electr. Electron. Eng. Sib., vol. 13, no. 2, pp. 728–732, 2010, doi: 10.1109/SIBIRCON.2010.5555154.
P. P. Nechypurenko, and V. N. Soloviev, “Using ICT as the Tools of Forming the Senior Pupils’ Research Competencies in the Profile Chemistry Learning of Elective Course ‘Basics of Quantitative Chemical Analysis,’” EducDim, vol. 51, pp. 7–24, 2019. doi: https://doi.org/10.31812/pedag.v51i0.3648.
N. Tekin, O. Aslan, and S. Yılmaz, “Improving Pre-Service Science Teachers’ Content Knowledge and Argumentation Quality through Socio-Scientific Issues-Based Modules: An Action Research Study,” J. Sci. Learn., vol. 4, no. 1, pp. 80–90, 2020, doi: 10.17509/jsl.v4i1.23378.
J. W. Creswell, Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 4th ed. Boston: Pearson, 2012.
M. Brydon-Miller, D. Greenwood, and P. Maguire, “Why Action Research?,” Action Res., vol. 1, no. 1, pp. 9–28, 2003, doi: 10.1177/14767503030011002.
J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to Design and Ecaluate Research in Education, 8th ed. New York: Mc-Graw Hill, 2012.
A. Setyawan, N. Aznam, Paidi, and T. Itrawati, “Influence of The Use Of Technology Through Problem Based Learning and Inkuiri Models are Leading to Scientific Communication Students Class VII,” J. Technol. Sci. Educ., vol. 10(2), no. 2, pp. 190–198, 2020. doi: 10.3926/jotse.962
A. Fombona-Pascual, J. Fombona, and R. Vicente, “Augmented Reality, a Review of a Way to Represent and Manipulate 3D Chemical Structures,” J. Chem. Inf. Model., vol. 62, no. 8, pp. 1863–1872, 2022, doi: 10.1021/acs.jcim.1c01255.
C. Y. Lin and H. K. Wu, “Effects of different ways of using visualizations on high school students’ electrochemistry conceptual understanding and motivation towards chemistry learning,” Chem. Educ. Res. Pract., vol. 22, no. 3, pp. 786–801, 2021, doi: 10.1039/d0rp00308e.
J. Garzón and J. Acevedo, “Meta-analysis of the impact of Augmented Reality on students’ learning gains,” Educ. Res. Rev., vol. 27, no. April 2018, pp. 244–260, 2019, doi: 10.1016/j.edurev.2019.04.001.
M.-B. Ibáñez and C. Delgado-Kloos, “Augmented reality for STEM learning: A systematic review,” Comput. Educ., vol. 123, pp. 109–123, 2018, doi: https://doi.org/10.1016/j.compedu.2018.05.002.
Y. Shiue, “Impact of an Augmented Reality System on Students ’ Learning Performance for a Health Education Course,” Int. Jpurnal Manag. Econ. Soc. Sci., vol. 8, no. 3, pp. 195–204, 2019, doi: 10.32327/IJMESS.8.3.2019.12.
A. Amores-valencia and D. Burgos, “The Impact of Augmented Reality ( AR ) on the Academic Performance of High School Students,” Electronics, vol. 12, p. 2173, 2023. doi: 10.3390/electronics12102173
A. Amores-valencia, D. Burgos, and J. W. Branch-bedoya, “Influence of motivation and academic performance in the use of Augmented Reality in education . A systematic review,” Front. Psychol., vol. 13, p. 1011409, 2022. doi: 10.3389/fpsyg.2022.1011409.
S.-Y. Chen and S.-Y. Liu, “Using augmented reality to experiment with elements in a chemistry course,” Comput. Human Behav., vol. 111, p. 106418, 2020, doi: https://doi.org/10.1016/j.chb.2020.106418.
D. R. Sari, S. Yamtinah, S. R. D. Ariani, S. Saputro, E. Susanti VH, and A. S. Shidiq, “Augmented Reality Media Validity based on Tetrahedral Chemical Representation with Aiken Validation Index,” J. Penelit. Pendidik. IPA, vol. 8, no. 6, pp. 3139–3145, 2022, doi: 10.29303/jppipa.v8i6.2333.
L. Kieran and C. Anderson, “Connecting Universal Design for Learning With Culturally Responsive Teaching,” Educ. Urban Soc., vol. 51, no. 9, pp. 1202–1216, Jul. 2018, doi: 10.1177/0013124518785012.
A. M. Villegas and T. Lucas, “Preparing Culturally Responsive Teachers: Rethinking the Curriculum,” J. Teach. Educ., vol. 53, no. 1, pp. 20–32, Jan. 2002, doi: 10.1177/0022487102053001003.
M. Vavrus, “Culturally responsive teaching,” in 21st Century Education: A Reference Handbook, Thousand Oaks: SAGE Publications, Inc., 2008, pp. 49–57. doi: 10.4135/9781412964012.n56.
C. A. Warren, “Empathy, Teacher Dispositions, and Preparation for Culturally Responsive Pedagogy,” J. Teach. Educ., vol. 69, no. 2, pp. 169–183, Jun. 2017, doi: 10.1177/0022487117712487.
L. Rahmah, N. I. P. I. Sari, and A. N. M. Ansori, “Diversity of sate (satay) as Indonesian ancient food,” Theory Pract. meat Process., vol. 9, no. 2, pp. 125–134, 2024, doi: 10.21323/2414-438x-2024-9-2-125-134. doi: 10.21323/2414-438X-2024-9-2-125-134.
A. Husbands and S. Cranford, “A Material Perspective of Wood, Smoke, and BBQ,” Matter, vol. 1, no. 5, pp. 1092–1095, 2019, doi: 10.1016/j.matt.2019.10.014.
D. R. Kurniati and I. Rohman, “The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter,” J. Phys. Conf. Ser., vol. 1013, no. 1, 2018, doi: 10.1088/1742-6596/1013/1/012088.
E. Asmalia, Yuk, Mengenal Makanan Hasil Fermentasi Khas Indonesia. Jakarta Timur: Badan Pengembangan dan Pembinaan Bahasa, 2018.
W. Al-Dahhan and E. Yousif, “Hydrogen Balloons: Bright Colors but Hidden Fire Hazard,” Int. J. Public Heal. Saf., vol. 3, no. 1, p. 151, 2018.
F. Caruso, G. Gelardi, B. Elsener, and R. J. Flatt, “Demonstration of atomic emission from exploding hydrogen balloons for (almost) everybody,” J. Chem. Educ., vol. 90, no. 10, pp. 1406–1408, 2013, doi: 10.1021/ed300785q.
T. Keinonen and T. de Jager, “Student Teachers’ Perspectives on Chemistry Education in South Africa and Finland,” J. Sci. Teacher Educ., vol. 28, no. 6, pp. 485–506, Aug. 2017, doi: 10.1080/1046560X.2017.1378055.
A. Winarti, A. Almubarak, P. Saadi, I. Ijirana, S. Aminah, and R. Ratman, “Culturally Responsive Chemistry Teaching (CRCT) of College Students as A Novice Teacher: Does It Matter?,” JTK (Jurnal Tadris Kim., vol. 7, no. 2, pp. 175–189, 2022, doi: 10.15575/jtk.v7i1.20676.
J. C. Ortiz-Rodríguez, H. Brinkman, L. Nglankong, B. Enderle, and J. M. Velázquez, “Promoting Inclusive and Culturally Responsive Teaching Using Co-classes for General Chemistry,” J. Chem. Educ., vol. 99, no. 1, pp. 162–170, Jan. 2022, doi: 10.1021/acs.jchemed.1c00339.
Y. Rahmawati, A. Mardiah, E. Taylor, P. C. Taylor, and A. Ridwan, “Chemistry Learning through Culturally Responsive Transformative Teaching (CRTT): Educating Indonesian High School Students for Cultural Sustainability,” Sustainability, vol. 15, no. 8, pp. 1-18, 2023. doi: 10.3390/su15086925
W. Cao and Z. Yu, “The impact of augmented reality on student attitudes, motivation, and learning achievements—a meta-analysis (2016–2023),” Humanit. Soc. Sci. Commun., vol. 10, no. 1, pp. 1–12, 2023, doi: 10.1057/s41599-023-01852-2.
W. Min and Z. Yu, “A Bibliometric Analysis of Augmented Reality in Language Learning,” Sustainability, vol. 15, no. 9, p. 7235, 2023, doi: 10.3390/su15097235.
J. Y. Lai and L. T. Chang, “Impacts of Augmented Reality Apps on First Graders’ Motivation and Performance in English Vocabulary Learning,” SAGE Open, vol. 11, no. 4, 2021, doi: 10.1177/21582440211047549.
L. Liang, Z. Zhang, and J. Guo, “The Effectiveness of Augmented Reality in Physical Sustainable Education on Learning Behaviour and Motivation,” Sustain. , vol. 15, no. 6, 2023, doi: 10.3390/su15065062.
M. Akçayır and G. Akçayır, “Advantages and challenges associated with augmented reality for education: A systematic review of the literature,” Educ. Res. Rev., vol. 20, pp. 1–11, 2017, doi: https://doi.org/10.1016/j.edurev.2016.11.002.
A. Ardyansyah and S. Rahayu, “Development and Implementation of Augmented Reality-Based Card Game Learning Media with Environmental Literacy for Improving Students’ Understanding of Carbon Compounds,” Orbital, vol. 15, no. 2, pp. 118–126, 2023, doi: 10.17807/orbital.v15i2.17617.