Main Article Content

Abstract

Penggunaan teknologi yang sangat berkaitan erat dengan masyarakat di era sekarang ini membuat aplikasi perdagangan seluler (mobile) tidak bisa dipisahkan begitu saja dari masyarakat Indonesia. Masyarakat Indonesia yang sering dianggap boros dan konsumtif yang membelanjakan uang mereka untuk hal hal yang tidak sebenarnya tidak perlu tetapi faktanya masyarakat juga memiliki ketertarikan dan minat terhadap investasi khususnya investasi dipasar modal. Oleh sebab itu, penelitian ini bertujuan untuk mengetahui bagaimana adopsi perdagangan saham seluler di indonesia. Dengan teknik analisis data menggunakan structural equation modeling techniques (SEM) menggunakan software SmartPLS 3 kepada 136 responden yang mengisi kuesioner melalui google form. Penelitian ini menggabungkan technology acceptance model (TAM) dan theory of planned behavior (TPB) serta resiko yang dirasakan, manfaat dirasakan, dan kepercayaan untuk memprediksi dan menjelaskan niat investor untuk menggunakan aplikasi perdagangan saham seluler. Hasil dari penelitian ini menunjukkan bahwa manfaat yang dirasakan, resiko yang dirasakan, sikap, pengaruh sosial, kontrol perilaku, dan kegunaan yang dirasakan berpengaruh terhadap niat. Selanjutnya resiko yang dirasakan, manfaat yang dirasakan, kegunaan yang dirasakan dan yang dirasakan berpengaruh terhadap sikap. Selanjutnya kepercayaan berpengaruh terhadap pengaruh sosial dan kontrol perilaku. Selanjutnya kemudahan penggunaan berpengaruh terhadap kegunaan yang dirasakan. sedangkan kepercayaan tidak berpengaruh terhadap sikap dan kemudahaan penggunaan tidak berpengaruh terhadap sikap.

Keywords

technology acceptance model theory of planned behavior kepercayaan resiko yang dirasakan manfaat yang dirasakan investor

Article Details

How to Cite
Nurfauzan, J. A., & Priyono, A. (2022). Analisis TAM dan TPB dalam Penerimaan Aplikasi Perdagangan Saham Seluler (Mobile) di Kalangan Investor di Indonesia. Selekta Manajemen: Jurnal Mahasiswa Bisnis & Manajemen, 1(4), 79–96. Retrieved from https://journal.uii.ac.id/selma/article/view/24883

References

  1. Ajzen, I. (1991) ‘The theory of planned behavior’, Organizational Behavior and Human Decision Processes, 50(2), pp. 179–211. doi: 10.1016/0749-5978(91)90020-T.
  2. Ajzen, I., Fishbein, M. and Fishbein, M. (2011) ‘Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes’, European Review of Social Psychology, 11(1), pp. 1-33 doi: 10.1080/14792779943000116.
  3. Al-sharafi, M. A. (2017) ‘The Effect of Perceived Ease of Use and Usefulness on Customers Intention to Use Online Banking Services: The Mediating Role of Perceived Trust’, Economics, Econometrics and Finance, 7(1), pp. 9–14.
  4. Alalwan, A. A. et al. (2018) ‘Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust’, Technology in Society, 55, pp. 100–110. doi: 10.1016/j.techsoc.2018.06.007.
  5. Beldad, A., Jong, M. De and Steehouder, M. (2010) ‘Computers in Human Behavior How shall I trust the faceless and the intangible ? A literature review on the antecedents of online trust’, Computers in Human Behavior, 26(5), pp. 857–869. doi: 10.1016/j.chb.2010.03.013.
  6. Chiu, C. et al. (2012) ‘Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents’, Decision Support Systems, 53(4), pp. 835–845. doi: 10.1016/j.dss.2012.05.021.
  7. Chong, L., Ong, H. and Tan, S. (2021) ‘Acceptability of mobile stock trading application : A study of young investors in Malaysia’, Technology in Society, 64(September 2020), p. 101497. doi: 10.1016/j.techsoc.2020.101497.
  8. Davis, F., Bagozzi, R. and Warshaw, P. (1989) ‘User Acceptance of Computer Technology: A Comparison of Two Theoretical Models’, Management Science, 35(8), pp. 982–1003. doi: 10.1287/mnsc.35.8.982.
  9. Davis, F. D. (1989) ‘Perceived usefulness, perceived ease of use, and user acceptance of information technology’, MIS Quarterly: Management Information Systems, 13(3), pp. 319–339. doi: 10.2307/249008.
  10. Featherman, M. S. and Pavlou, P. A. (2003) ‘Predicting e-services adoption : a perceived risk facets perspective’, International Journal of Human-Computer Studies, 59(4), pp. 451–474. doi: 10.1016/S1071-5819(03)00111-3.
  11. Forsythe, S. M. and Shi, B. (2003) ‘Consumer patronage and risk perceptions in Internet shopping’, Journal of Business Research, 56(11), pp. 867–875. doi: 10.1016/S0148-2963(01)00273-9.
  12. Gefen, D. (2000) ‘E-commerce: The role of familiarity and trust’, Omega, 28(6), pp. 725–737. doi: 10.1016/S0305-0483(00)00021-9.
  13. Gopi, M. and Ramayah, T. (1999) ‘Applicability of theory of planned behavior in predicting intention to trade online Some evidence from a developing country’, International Journal of Emerging Markets, 2(4), pp. 348-360 doi: 10.1108/17468800710824509.
  14. Gunawan, F., Ali, M. M. and Nugroho, A. (2019) ‘Analysis of the Effects of Perceived Ease of Use and Perceived Usefulness on Consumer Attitude and Their Impacts on Purchase Decision on PT Tokopedia In Jabodetabek’, European Journal of Business and Management Research, 4(5), pp. 1–6.
  15. Hair, J. et al. (2017) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) - Joseph F. Hair, Jr., G. Tomas M. Hult, Christian Ringle, Marko Sarstedt, Sage.
  16. Hajli, N. et al. (2017) ‘A social commerce investigation of the role of trust in a social networking site on purchase intentions’, Journal of Business Research, 71, pp. 133–141. doi: 10.1016/j.jbusres.2016.10.004.
  17. Hansen, J. M., Saridakis, G. and Benson, V. (2018) ‘Risk , Trust , and the Interaction of Perceived Ease of Use and Behavioral Control in Predicting Consumer s ’ Use of Social Media for Transactions’, Computers in Human Behavior, 80, pp. 197–206. doi: https://doi.org/10.1016/j.chb.2017.11.010.
  18. Jung, N. Y., Kim, S. and Kim, S. H. (2016) ‘The Effects of Consumers ’ Perceived Benefits on Attitudes and Revisit Intentions in an Online Brand Community’, International Textile and Apparel Association (ITAA) Annual Conference Proceedings, pp. 1–2.
  19. Kim, G., Shin, B. and Lee, H. G. (2009) ‘Understanding dynamics between initial trust and usage intentions of mobile banking’, Information Systems Journal, 19(3), pp. 283–311. doi: 10.1111/j.1365-2575.2007.00269.x.
  20. Krishanan, D. et al. (2016) ‘Consumers’ perceived interactivity and intention to use mobile banking in structural equation modeling’, International Review of Management and Marketing, 6(4), pp. 883–890.
  21. Lee, M. (2009) ‘Predicting and explaining the adoption of online trading : An empirical study in Taiwan’, Decision Support Systems, 47(2), pp. 133–142. doi: 10.1016/j.dss.2009.02.003.
  22. Merhi, M., Hone, K. and Tarhini, A. (2019) ‘A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust’, Technology in Society, 59, p. 101151. doi: 10.1016/j.techsoc.2019.101151.
  23. Mu, F., Climent-climent, S. and Liébana-cabanillas, F. (2017) ‘Determinants of intention to use the mobile banking apps : An extension of the classic TAM model’, Spanish Journal of Marketing - ESIC, 21(1), pp. 25-38. doi: 10.1016/j.sjme.2016.12.001.
  24. Onasie, V. and Widoatmodjo, S. (2020) ‘Niat Investasi Generasi Milenial Di Pasar Modal’, Jurnal Manajerial Dan Kewirausahaan, 2(2), pp. 318–326. Available at: https://journal.untar.ac.id/index.php/JMDK/article/view/7924.
  25. Pham, T. T. T. and Ho, J. C. (2015) ‘The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments’, Technology in Society, 43, pp. 159–172. doi: 10.1016/j.techsoc.2015.05.004.
  26. PT Kustodian Sentral Efek Indonesia (2021) ‘Statistik Pasar Modal Indonesia Februari 2021’, Kustodian Sentral Efek Indonesia, pp. 1–6. Available at: https://www.ksei.co.id/files/Statistik_Publik_Januari_2021.pdf.
  27. Rahmandani, F., Tinus, A. and Ibrahim, M. M. (2018) ‘Analisis Dampak Penggunaan Gadget (Smartphone) Terhadap Kepribadian Dan Karakter (Kekar) Peserta Didik Di Sma Negeri 9 Malang’, Jurnal Civic Hukum, 3(1), p. 18. doi: 10.22219/jch.v3i1.7726.
  28. Riyanti, Y. E. et al. (2022) ‘Faktor-Faktor Yang Mempengaruhi Minat Dalam Mengadopsi Layanan Fintech’, Syntax Literate: Jurnal Ilmiah Indonesia, [S.l.] 7(2), pp. 2710-2724.
  29. Shih-Tse Wang, E. and Pei-Yu Chou, N. (2014) ‘Consumer Characteristics, Social Influence, and System Factors on Online Group-Buying Repurchasing Intention’, Journal of Electronic Commerce Research, 15(2), pp. 119–132.
  30. Susilo, B. D. (2009) Pasar Modal, Mekanisme Perdagangan Saham, Analisis Sekuritas, dan Strategi Investasi Di Bursa Efek Indonesia BEI. Yogyakarta : UPP STIM YKPN
  31. Tarigan, R. E. (2013) ‘Peranan Sistem Informasi dengan Online Trading terhadap Pertumbuhan Pasar Modal di Indonesia’, ComTech: Computer, Mathematics and Engineering Applications, 4(2), pp. 803-811. doi: 10.21512/comtech.v4i2.2517.
  32. Todd, S. T. and P. A. (1995) ‘Understanding Information Technology Usage: A Test of Competing Models’, Information Systems Research, 6(2), pp. 144–176. Available at: https://www.jstor.org/stable/23011007.
  33. Wessels, L. and Drennan, J. (2010) ‘An investigation of consumer acceptance of M-banking’, International Journal of Bank Marketing, 28(7), pp. 547–568. doi: 10.1108/02652321011085194.
  34. Wu, I.-L. and Chen, J.-L. (2005) ‘An extension of Trust and TAM model with TPB in the initial adoption of on-line tax : An empirical study’, International Journal of Human-Computer Studies, 62(6), pp. 784–808. doi: https://doi.org/10.1016/j.ijhcs.2005.03.003.